Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0308207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39110684

RESUMEN

Neurofibromatosis Type 1 (NF1) is a complex genetic disorder characterized by the development of benign neurofibromas, which can cause significant morbidity in affected individuals. While the molecular mechanisms underlying NF1 pathogenesis have been extensively studied, the development of effective therapeutic strategies remains a challenge. This paper presents the development and validation of a novel biomaterial testing model to enhance our understanding of NF1 pathophysiology, disease mechanisms and evaluate potential therapeutic interventions. Our long-term goal is to develop an invitro model of NF1 to evaluate drug targets. We have developed an in vitro system to test the cellular behavior of NF1 patient derived cells on electroconductive aligned nanofibrous biomaterials with electrical stimulatory cues. We hypothesized that cells cultured on electroconductive biomaterial will undergo morphological changes and variations in cell proliferation that could be further enhanced with the combination of exogenous electrical stimulation (ES). In this study, we developed electrospun Hyaluronic Acid-Carbon Nanotube (HA-CNT) nanofiber scaffolds to mimic the axon's topographical and bioelectrical cues that influence neurofibroma growth and development. The cellular behavior was qualitatively and quantitively analyzed through immunofluorescent stains, Alamar blue assays and ELISA assays. Schwann cells from NF1 patients appear to have lost their ability to respond to electrical stimulation in the development and regeneration range, which was seen through changes in morphology, proliferation and NGF release. Without stimulation, the conductive material enhances NF1 SC behavior. Wild-type SC respond to electrical stimulation with increased cell proliferation and NGF release. Using this system, we can better understand the interaction between axons and SC that lead to tumor formation, homeostasis and regeneration.


Asunto(s)
Proliferación Celular , Estimulación Eléctrica , Ácido Hialurónico , Nanotubos de Carbono , Células de Schwann , Células de Schwann/metabolismo , Nanotubos de Carbono/química , Humanos , Ácido Hialurónico/química , Nanofibras/química , Neurofibromatosis 1/patología , Neurofibromatosis 1/metabolismo , Andamios del Tejido/química , Células Cultivadas , Materiales Biocompatibles/química
2.
Cancers (Basel) ; 16(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061138

RESUMEN

Plexiform neurofibromas (PNs) occur in about a half of neurofibromatosis type 1 (NF1) patients and have garnered significant research attention due to their capacity for growth and potential for malignant transformation. NF1 plexiform neurofibroma (pNF1) is a complex tumor composed of Schwann cell-derived tumor cells (Nf1-/-) and the tumor microenvironment (TME). Although it has been widely demonstrated that the TME is involved in the formation of neurofibromas, little is known about the effects of the TME on the subsequent progression of human pNF1. Elucidating the molecular interactions between tumor cells and the TME may provide new therapeutic targets to reduce the progression of pNF1. In the present study, we focused on the contributions of fibroblasts, the most abundant cell types in the TME, to the growth of pNF1. To simulate the TME, we used a three-dimensional (3D) coculture model of immortalized pNF1 tumor cells (Nf1-/-) and primary fibroblasts (Nf1+/-) derived from pNF1 patients. We performed live-cell imaging of 3D/4D (3D in real-time) cultures through confocal microscopy followed by 3D quantitative analyses using advanced imaging software. The growth of pNF1 spheroids in 3D cocultures with fibroblasts was significantly greater than that of pNF1 spheroids in 3D monocultures. An increase in the growth of pNF1 spheroids also occurred when they were cultured with conditioned media (CM) from fibroblasts. Moreover, fibroblast-derived CM increased the invasive outgrowth and further local invasion of pNF1 spheroids. Interestingly, when small extracellular vesicles (sEVs) were depleted from the fibroblast-derived CM, the stimulation of the growth of pNF1 spheroids was lost. Our results suggest that fibroblast-derived sEVs are a therapeutic target for reducing the growth of pNF1.

3.
Toxicol In Vitro ; 89: 105564, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36736710

RESUMEN

Epidemiological studies indicate that human and animal exposure to environmental mercury (Hg) disrupts normal immune system function, but the molecular mechanism responsible for this is still unresolved. We have previously utilized phospho-proteomic mass spectrometry to demonstrate that in the absence of B Cell Receptor (BCR) stimulation, exposure of B cells to Hg induces significant changes to a great many elements of the BCR signaling pathway in a concentration dependent manner. In this report, we have extended those initial findings by utilizing mass spectrometry to evaluate in detail the effect of low-level Hg exposure on BCR induced phospho-proteomic changes. Specifically, murine WEHI-231 B lymphoma cells were exposed to environmentally relevant levels of Hg with or without concomitant BCR stimulation. The cellular phospho-proteomes were then profiled by LC-MS/MS. We found that for low-level exposures, Hg interference with signal transduction across the BCR pathway was predominantly associated with modification of phosphorylation of 12 phosphosites located on seven different proteins. Nine sites were serine, two sites tyrosine and one site threonine. Most of these sites are novel, in the sense that only the two tyrosine and one of the serine sites have previously been reported to be associated with BCR signaling.


Asunto(s)
Mercurio , Animales , Ratones , Humanos , Fosfoserina/metabolismo , Fosfoserina/farmacología , Mercurio/toxicidad , Cromatografía Liquida , Proteómica , Línea Celular , Espectrometría de Masas en Tándem , Transducción de Señal , Receptores de Antígenos de Linfocitos B/metabolismo , Proteínas/metabolismo , Fosforilación , Tirosina/metabolismo
4.
Cancers (Basel) ; 16(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201517

RESUMEN

Neurofibromatosis type 1 (NF1) is a disorder in which RAS is constitutively activated due to the loss of the Ras-GTPase-activating activity of neurofibromin. RAS must be prenylated (i.e., farnesylated or geranylgeranylated) to traffic and function properly. Previous studies showed that the anti-growth properties of farnesyl monophosphate prodrug farnesyltransferase inhibitors (FTIs) on human NF1 malignant peripheral nerve sheath tumor (MPNST) cells are potentiated by co-treatment with lovastatin. Unfortunately, such prodrug FTIs have poor aqueous solubility. In this study, we synthesized a series of prodrug FTI polyamidoamine generation 4 (PAMAM G4) dendrimers that compete with farnesyl pyrophosphate for farnesyltransferase (Ftase) and assessed their effects on human NF1 MPNST S462TY cells. The prodrug 3-tert-butylfarnesyl monophosphate FTI-dendrimer (i.e., IG 2) exhibited improved aqueous solubility. Concentrations of IG 2 and lovastatin (as low as 0.1 µM) having little to no effect when used singularly synergistically suppressed cell proliferation, colony formation, and induced N-RAS, RAP1A, and RAB5A deprenylation when used in combination. Combinational treatment had no additive or synergistic effects on the proliferation/viability of immortalized normal rat Schwann cells, primary rat hepatocytes, or normal human mammary epithelial MCF10A cells. Combinational, but not singular, in vivo treatment markedly suppressed the growth of S462TY xenografts established in the sciatic nerves of immune-deficient mice. Hence, prodrug farnesyl monophosphate FTIs can be rendered water-soluble by conjugation to PAMAM G4 dendrimers and exhibit potent anti-tumor activity when combined with clinically achievable statin concentrations.

5.
Physiol Rep ; 10(21): e15508, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36377055

RESUMEN

Angiotensin II (Ang II)-dependent stimulation of the AT1 receptor in proximal tubules increases sodium reabsorption and blood pressure. Reabsorption is driven by the Na,K-pump that is acutely stimulated by Ang II, which requires phosphorylation of serine-938 (S938). This site is present in humans and only known to phosphorylated by PKA. Yet, activation of AT1 decreases cAMP required to activate PKA and inhibiting PKA does not block Ang II-dependent phosphorylation of S938. We tested the hypothesis that Ang II-dependent activation is mediated via increased phosphorylation at S938 through a PI3K/AKT-dependent pathway. Experiments were conducted using opossum kidney cells, a proximal tubule cell line, stably co-expressing the AT1 receptor and either the wild-type (α-1.wild-type) or an alanine substituted (α-1.S938A) form of rat kidney Na,K-pump. A 5-min exposure to 10 pM Ang II significantly activated Na,K-pump activity (56%) measured as short-circuit current across polarized α-1.wild-type cells. Wortmannin, at a concentration that selectively inhibits PI3K, blocked that Ang II-dependent activation. Ang II did not stimulate Na,K-pump activity in α-1.S938A cells. Ang II at 10 and 100 pM increased phosphorylation at S938 in α-1.wild-type cells measured in whole cell lysates. The increase was inhibited by wortmannin plus H-89, an inhibitor of PKA, not by either alone. Ang II activated AKT inhibited by wortmannin, not H-89. These data support our hypothesis and show that Ang II-dependent phosphorylation at S938 stimulates Na,K-pump activity and transcellular sodium transport.


Asunto(s)
Angiotensina II , Fosfatidilinositol 3-Quinasas , Ratas , Animales , Humanos , Angiotensina II/farmacología , Angiotensina II/metabolismo , Fosforilación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Wortmanina/farmacología , Wortmanina/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Túbulos Renales Proximales/metabolismo , Sodio/metabolismo , Zarigüeyas/metabolismo
6.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885152

RESUMEN

Breast cancer frequently metastasizes to lymphatics and the presence of breast cancer cells in regional lymph nodes is an important prognostic factor. Delineating the mechanisms by which breast cancer cells disseminate and spatiotemporal aspects of interactions between breast cancer cells and lymphatics is needed to design new therapies to prevent lymphatic metastases. As triple-negative breast cancer (TNBC) has a high incidence of lymphatic metastasis, we used a three-dimensional (3D) coculture model of human TNBC cells and human microvascular lymphatic endothelial cells (LECs) to analyze TNBC:LEC interactions. Non-invasive analyses such as live-cell imaging in real-time and collection of conditioned media for secretomic analysis were facilitated by our novel microfluidic chambers. The volumes of 3D structures formed in TNBC:LEC cocultures are greater than that of 3D structures formed by either LEC or TNBC monocultures. Over 4 days of culture there is an increase in multicellular invasive outgrowths from TNBC spheroids and an association of TNBC spheroids with LEC networks. The increase in invasive phenotype also occurred when TNBC spheroids were cultured in LEC-conditioned media and in wells linked to ones containing LEC networks. Our results suggest that modeling spatiotemporal interactions between TNBC and LECs may reveal paracrine signaling that could be targeted to reduce lymphatic metastasis.

7.
PLoS One ; 16(5): e0252314, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048471

RESUMEN

Breast ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC). It is still unclear which DCIS will become invasive and which will remain indolent. Patients often receive surgery and radiotherapy, but this early intervention has not produced substantial decreases in late-stage disease. Sprouty proteins are important regulators of ERK/MAPK signaling and have been studied in various cancers. We hypothesized that Sprouty4 is an endogenous inhibitor of ERK/MAPK signaling and that its loss/reduced expression is a mechanism by which DCIS lesions progress toward IDC, including triple-negative disease. Using immunohistochemistry, we found reduced Sprouty4 expression in IDC patient samples compared to DCIS, and that ERK/MAPK phosphorylation had an inverse relationship to Sprouty4 expression. These observations were reproduced using a 3D culture model of disease progression. Knockdown of Sprouty4 in MCF10.DCIS cells increased ERK/MAPK phosphorylation as well as their invasive capability, while overexpression of Sprouty4 in MCF10.CA1d IDC cells reduced ERK/MAPK phosphorylation, invasion, and the aggressive phenotype exhibited by these cells. Immunofluorescence experiments revealed reorganization of the actin cytoskeleton and relocation of E-cadherin back to the cell surface, consistent with the restoration of adherens junctions. To determine whether these effects were due to changes in ERK/MAPK signaling, MEK1/2 was pharmacologically inhibited in IDC cells. Nanomolar concentrations of MEK162/binimetinib restored an epithelial-like phenotype and reduced pericellular proteolysis, similar to Sprouty4 overexpression. From these data we conclude that Sprouty4 acts to control ERK/MAPK signaling in DCIS, thus limiting the progression of these premalignant breast lesions.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Immunoblotting , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteínas del Tejido Nervioso/genética
8.
Cancer Metastasis Rev ; 38(3): 445-454, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31605250

RESUMEN

Cells grown in three dimensions (3D) within natural extracellular matrices or synthetic scaffolds more closely recapitulate the phenotype of those cells within tissues in regard to normal developmental and pathobiological processes. This includes degradation of the surrounding stroma as the cells migrate and invade through the matrices. As 3D cultures of tumor cells predict efficacy of, and resistance to, a wide variety of cancer therapies, we employed tissue-engineering approaches to establish 3D pathomimetic avatars of human breast cancer cells alone and in the context of both their cellular and pathochemical microenvironments. We have shown that we can localize and quantify key parameters of malignant progression by live-cell imaging of the 3D avatars over time (4D). One surrogate for changes in malignant progression is matrix degradation, which can be localized and quantified by our live-cell proteolysis assay. This assay is predictive of changes in spatio-temporal and dynamic interactions among the co-cultured cells and changes in viability, proliferation, and malignant phenotype. Furthermore, our live-cell proteolysis assay measures the effect of small-molecule inhibitors of proteases and kinases, neutralizing or blocking antibodies to cytokines and photodynamic therapy on malignant progression. We suggest that 3D/4D pathomimetic avatars in combination with our live-cell proteolysis assays will be a useful preclinical screening platform for cancer therapies. Our ultimate goal is to develop 3D/4D avatars from an individual patient's cancer in which we can screen "personalized medicine" therapies using changes in proteolytic activity to quantify therapeutic efficacy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Animales , Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Microscopía Confocal , Imagen Óptica/métodos , Proteolisis , Microambiente Tumoral
9.
Adv Exp Med Biol ; 1152: 401-411, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456196

RESUMEN

Understanding breast cancer cell proteolysis and migration is crucial for developing novel therapies to prevent local and distant metastases. Human cancer cells utilize many biological functions comparable to those observed during embryogenesis conferring the cancer cells with survival advantages. One such advantage is the ability to secrete proteases into the tumor microenvironment in order to remodel the extracellular matrix to facilitate migration. These proteases degrade the extracellular matrix, which initially functions as a barrier to cancer cell escape from their site of origin. The extracellular matrix also functions as a reservoir for growth factors that can be released by the secreted proteases and thereby further aid tumor growth and progression. Other survival advantages of tumor cells include: the ability to utilize multiple modes of motility, thrive in acidic microenvironments, and the tumor cell's ability to hijack stromal and immune cells to foster their own migration and survival. In order to reduce metastasis, we must focus our efforts on addressing the survival advantages that tumor cells have acquired.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Proteolisis , Matriz Extracelular , Femenino , Humanos , Péptido Hidrolasas/metabolismo , Microambiente Tumoral
10.
Semin Cancer Biol ; 54: 29-39, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29621614

RESUMEN

Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.


Asunto(s)
Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Animales , Biomarcadores de Tumor , Adhesión Celular/genética , Metabolismo Energético , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Integrinas/genética , Integrinas/metabolismo , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rap1/antagonistas & inhibidores , Proteínas de Unión al GTP rap1/genética , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
11.
J Mammary Gland Biol Neoplasia ; 24(1): 1-15, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30056557

RESUMEN

About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Cultivo Primario de Células/métodos , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Línea Celular Tumoral , Técnicas de Cocultivo/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Humanos , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control
12.
Neoplasia ; 20(9): 951-963, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30144784

RESUMEN

Diagnosis of breast ductal carcinoma in situ (DCIS) presents a challenge since we cannot yet distinguish those cases that would remain indolent and not require aggressive treatment from cases that may progress to invasive ductal cancer (IDC). The purpose of this study is to determine the role of Rap1Gap, a GTPase activating protein, in the progression from DCIS to IDC. Immunohistochemistry (IHC) analysis of samples from breast cancer patients shows an increase in Rap1Gap expression in DCIS compared to normal breast tissue and IDCs. In order to study the mechanisms of malignant progression, we employed an in vitro three-dimensional (3D) model that more accurately recapitulates both structural and functional cues of breast tissue. Immunoblotting results show that Rap1Gap levels in MCF10.Ca1D cells (a model of invasive carcinoma) are reduced compared to those in MCF10.DCIS (a model of DCIS). Retroviral silencing of Rap1Gap in MCF10.DCIS cells activated extracellular regulated kinase (ERK) mitogen-activated protein kinase (MAPK), induced extensive cytoskeletal reorganization and acquisition of mesenchymal phenotype, and enhanced invasion. Enforced reexpression of Rap1Gap in MCF10.DCIS-Rap1GapshRNA cells reduced Rap1 activity and reversed the mesenchymal phenotype. Similarly, introduction of dominant negative Rap1A mutant (Rap1A-N17) in DCIS-Rap1Gap shRNA cells caused a reversion to nonmalignant phenotype. Conversely, expression of constitutively active Rap1A mutant (Rap1A-V12) in noninvasive MCF10.DCIS cells led to phenotypic changes that were reminiscent of Rap1Gap knockdown. Thus, reduction of Rap1Gap in DCIS is a potential switch for progression to an invasive phenotype. The Graphical Abstract summarizes these findings.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Activadoras de GTPasa/metabolismo , Biomarcadores , Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Citoesqueleto/metabolismo , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Inmunohistoquímica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Invasividad Neoplásica , Interferencia de ARN
13.
Exp Neurol ; 299(Pt B): 289-298, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29055717

RESUMEN

Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neurofibroma Plexiforme/patología , Bencimidazoles/farmacología , Proteína Morfogenética Ósea 2/antagonistas & inhibidores , Células Cultivadas , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Genes de Neurofibromatosis 1 , Genes Reporteros , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Terapia Molecular Dirigida , Neurofibroma Plexiforme/tratamiento farmacológico , Neurofibroma Plexiforme/genética , Neurofibromatosis 1/patología , Fenotipo , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Células de Schwann/citología , Transducción Genética , Células Tumorales Cultivadas , Proteína Fluorescente Roja
14.
Breast Cancer Res ; 19(1): 56, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28506312

RESUMEN

BACKGROUND: The breast tumor microenvironment regulates progression of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). However, it is unclear how interactions between breast epithelial and stromal cells can drive this progression and whether there are reliable microenvironmental biomarkers to predict transition of DCIS to IDC. METHODS: We used xenograft mouse models and a 3D pathomimetic model termed mammary architecture and microenvironment engineering (MAME) to study the interplay between human breast myoepithelial cells (MEPs) and cancer-associated fibroblasts (CAFs) on DCIS progression. RESULTS: Our results show that MEPs suppress tumor formation by DCIS cells in vivo even in the presence of CAFs. In the in vitro MAME model, MEPs reduce the size of 3D DCIS structures and their degradation of extracellular matrix. We further show that the tumor-suppressive effects of MEPs on DCIS are linked to inhibition of urokinase plasminogen activator (uPA)/urokinase plasminogen activator receptor (uPAR)-mediated proteolysis by plasminogen activator inhibitor 1 (PAI-1) and that they can lessen the tumor-promoting effects of CAFs by attenuating interleukin 6 (IL-6) signaling pathways. CONCLUSIONS: Our studies using MAME are, to our knowledge, the first to demonstrate a divergent interplay between MEPs and CAFs within the DCIS tumor microenvironment. We show that the tumor-suppressive actions of MEPs are mediated by PAI-1, uPA and its receptor, uPAR, and are sustained even in the presence of the CAFs, which themselves enhance DCIS tumorigenesis via IL-6 signaling. Identifying tumor microenvironmental regulators of DCIS progression will be critical for defining a robust and predictive molecular signature for clinical use.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Interleucina-6/genética , Inhibidor 1 de Activador Plasminogénico/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Animales , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal de Mama/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteoma/genética , Análisis de Matrices Tisulares , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Am J Physiol Cell Physiol ; 310(3): C227-32, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26582472

RESUMEN

How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.


Asunto(s)
Angiotensina II/farmacología , Membrana Celular/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Línea Celular , Membrana Celular/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Túbulos Renales Proximales/enzimología , Masculino , Mutación , Zarigüeyas , Fosforilación , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Serina , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Tiempo , Transfección , Regulación hacia Arriba
16.
Mini Rev Med Chem ; 16(5): 358-69, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26423696

RESUMEN

Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.


Asunto(s)
Proteínas ras/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Neoplasias/metabolismo , Neoplasias/patología , Prenilación de Proteína/efectos de los fármacos , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
17.
BMC Cancer ; 15: 584, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268945

RESUMEN

BACKGROUND: Ductal carcinoma in situ (DCIS) is a non-obligate precursor lesion of invasive breast cancer in which approximately half the patients will progress to invasive cancer. Gaining a better understanding of DCIS progression may reduce overtreatment of patients. Expression of the pro-inflammatory cytokine interleukin-6 increases with pathological stage and grade, and is associated with poorer prognosis in breast cancer patients. Carcinoma associated fibroblasts (CAFs), which are present in the stroma of DCIS patients are known to secrete pro-inflammatory cytokines and promote tumor progression. METHODS: We hypothesized that IL-6 paracrine signaling between DCIS cells and CAFs mediates DCIS proliferation and migration. To test this hypothesis, we utilized the mammary architecture and microenvironment engineering or MAME model to study the interactions between human breast CAFs and human DCIS cells in 3D over time. We specifically inhibited autocrine and paracrine IL-6 signaling to determine its contribution to early stage tumor progression. RESULTS: Here, DCIS cells formed multicellular structures that exhibited increased proliferation and migration when cultured with CAFs. Treatment with an IL-6 neutralizing antibody inhibited growth and migration of the multicellular structures. Moreover, selective knockdown of IL-6 in CAFs, but not in DCIS cells, abrogated the migratory phenotype. CONCLUSION: Our results suggest that paracrine IL-6 signaling between preinvasive DCIS cells and stromal CAFs represent an important factor in the initiation of DCIS progression to invasive breast carcinoma.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Invasividad Neoplásica/patología
18.
Breast Cancer Res Treat ; 147(2): 283-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25129346

RESUMEN

Triple-negative breast cancer (TNBC) patients suffer from a highly malignant and aggressive disease. They have a high rate of relapse and often develop resistance to standard chemotherapy. Many TNBCs have elevated epidermal growth factor receptor (EGFR) but are resistant to EGFR inhibitors as monotherapy. In this study, we sought to find a combination therapy that could sensitize TNBC to EGFR inhibitors. Phospho-mass spectrometry was performed on the TNBC cell line, BT20, treated with 0.5 µM gefitinib. Immunoblotting measured protein levels and phosphorylation. Colony formation and growth assays analyzed the treatment on cell proliferation, while MTT assays determined the synergistic effect of inhibitor combination. A Dual-Luciferase reporter gene plasmid measured translation. All statistical analysis was done on CalucuSyn and GraphPad Prism using ANOVAs. Phospho-proteomics identified the mTOR pathway to be of interest in EGFR inhibitor resistance. In our studies, combining gefitinib and temsirolimus decreased cell growth and survival in a synergistic manner. Our data identified eIF4B, as a potentially key fragile point in EGFR and mTOR inhibitor synergy. Decreased eIF4B phosphorylation correlated with drops in growth, viability, clonogenic survival, and cap-dependent translation. Taken together, these data suggest EGFR and mTOR inhibitors abrogate growth, viability, and survival via disruption of eIF4B phosphorylation leading to decreased translation in TNBC cell lines. Further, including an mTOR inhibitor along with an EGFR inhibitor in TNBC with increased EGFR expression should be further explored. Additionally, translational regulation may play an important role in regulating EGFR and mTOR inhibitor synergy and warrant further investigation.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Receptores ErbB/antagonistas & inhibidores , Factores Eucarióticos de Iniciación/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Femenino , Gefitinib , Células HEK293 , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/administración & dosificación , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/administración & dosificación , Sirolimus/análogos & derivados , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama Triple Negativas/patología
19.
ISRN Oncol ; 2013: 536529, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24294527

RESUMEN

The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.

20.
Neoplasia ; 15(10): 1125-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204192

RESUMEN

One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8) affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D) cultures. For these studies, we used 1) 3D reconstituted basement membrane overlay cultures of human carcinomas, 2) live cell imaging assays to assess proteolysis, and 3) in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Catepsina B/metabolismo , Neoplasias del Colon/metabolismo , Animales , Línea Celular Tumoral , Colágeno Tipo IV/metabolismo , Precursores Enzimáticos/metabolismo , Líquido Extracelular/metabolismo , Femenino , Xenoinjertos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones SCID , Trasplante de Neoplasias , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA