Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arthropod Struct Dev ; 81: 101373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39094354

RESUMEN

Schizomida is an enigmatic group of arachnids that is traditionally considered the dwarfed sister to Thelyphonida. Schizomids are of interest for evolutionary morphology, because they show a number of features like a tripartite prosoma dorsal shield (pro-, meso-, metapeltidium), formation of three sterna, a complex prosoma-opisthosoma transition and a metasoma. By analyzing the body organization of Schizomida and comparing it to Thelyphonida and other arachnids, this article provides evidence for independent evolution of some of these features in Schizomida. This supports the idea that, among arachnids, multiple and independent evolutionary pathways have resulted in similar morphologies, that conventionally have been considered shared similarities. - The analysis of serial microscopic sections and µCT-imaging of segmental indicator muscles of the prosoma evidences that the propeltidium covers prosoma segments 0-4, and the metapeltidium covers segments 5 and 6. The mesopeltidium is a dorsolateral sclerotization of the pleural membrane, not assigned to a segment, and therefore not a tergite. The topographic association of segmental musculature and sclerites of the tripartite dorsum of the prosoma differs from other taxa with such external body organization, e.g., Palpigradi and Solifugae, suggesting independent evolutionary origin. - The prosoma-opisthosoma transition integrates the first opisthosoma segment into the prosoma. The sternite of the first opisthosoma segment forms the metasternum between the coxae of the fourth pair of walking legs. The morphology of the prosoma-opisthosoma transition is similar to Uropygi and Amblypygi, but is less complex. - The morphology of the metasoma (opisthosoma segments X-XII) of Schizomida and Thelyphonida differs from that of all other arachnids carrying a metasoma, thus providing support for multiple independent evolutionary origins of metasomata.


Asunto(s)
Arácnidos , Evolución Biológica , Animales , Arácnidos/anatomía & histología , Arácnidos/ultraestructura , Microtomografía por Rayos X , Músculos/anatomía & histología , Músculos/ultraestructura , Anatomía Comparada , Filogenia
2.
Zoology (Jena) ; 113(3): 131-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20435453

RESUMEN

Juveniles of the common red rock crab of the Northeastern Pacific, Cancer productus, display a stunning diversity of colours and patterns, while adults all have the same drab colouration. Although this is widely known, key questions remain: (1) Does the frequency of different juvenile colours or patterns vary among collection sites or seasonally? (2) Does juvenile colour polymorphism reflect genetic heterogeneity or phenotypic plasticity in response to variable environmental conditions? (3) Do juveniles of different colours or patterns prefer substrata of different heterogeneity or brightness? We therefore: (i) described the variation in colour and pattern of juvenile C. productus; (ii) tested for associations between colour/pattern morphs and crab size, collection site, and season, in the field; (iii) conducted preliminary tests for habitat preferences (background colour, substratum type, light level) of different colour/pattern morphs in laboratory experiments, and (iv) tested the effect of diet (mussels versus shrimp) and feeding rate (high versus low) on juvenile colour/pattern. We describe 30 phenotypes that embrace a wide range of colour and pattern variants. The proportions of these phenotypes did not vary significantly among four collection sites, but they did vary significantly with season: over the summer and fall, juvenile colour and pattern variation was gradually replaced by the uniform adult colouration. The number of crabs displaying adult colouration also increased with crab size. Laboratory experiments suggest no significant preferences of different juvenile morphs for different backgrounds, substrata, or light levels. Diet (mussels versus shrimp) and feeding frequency had no effect on colour/pattern. Collectively, these results, although limited in scope, are not consistent with two likely hypotheses that could explain the extensive colour and pattern variation in juvenile C. productus: (i) selection for background matching by different cryptic forms and (ii) direct effects of diet or feeding rate on colour or pattern. Most probably, the large variety of different juvenile morphs is a result of frequency-dependent selection in which abundant variants are attacked disproportionately often and rarer forms are favoured. Juvenile colour polymorphism in C. productus may reduce the vulnerability to visual predators, impede the formation of a search image, and consequently decrease the risk of predation during the juvenile stages.


Asunto(s)
Adaptación Biológica/fisiología , Braquiuros/fisiología , Dieta , Ecosistema , Fenotipo , Pigmentación/fisiología , Selección Genética , Factores de Edad , Animales , Tamaño Corporal , Colombia Británica , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA