RESUMEN
Investigations regarding the feasibility, reliability, and accuracy of Fricke gel dosimeter layers for stereotactic radiosurgery are presented. A representative radiosurgery plan consisting of two targets has been investigated. Absorbed dose distributions measured using radiochromic films and gelatin Fricke Gel dosimetry in layers have been compared with dose distributions calculated by using a treatment planning system and Monte Carlo simulations. The different dose distributions have been compared by means of the gamma index demonstrating that gelatin Fricke gel dosimeter layers showed agreements of 100%, 100%, and 93%, with dose and distance tolerances of 2% and 2 mm, with respect to film dosimetry, treatment planning system and Monte Carlo simulations, respectively. The capability of the developed system for three-dimensional dose mapping was shown, obtaining promising results when compared with well-established dosimetry methods. The obtained results support the viability of Fricke gel dosimeter layers analyzed by optical methods for stereotactic radiosurgery.
Asunto(s)
Colorantes Fluorescentes/química , Geles/química , Fenoles/química , Dosímetros de Radiación/normas , Radiocirugia/métodos , Sulfóxidos/química , Estudios de Factibilidad , Humanos , Método de Montecarlo , Fantasmas de Imagen , Reproducibilidad de los ResultadosRESUMEN
Currently, advanced dosimeters like polymer gels are capable of obtaining reliable and accurate 3D dose distributions from correlations with the different polymerization degrees induced by incident radiation. Samples of polymer gel dosimeters are commonly read out using magnetic resonance imaging or optical methods like visible light transmission or laser computed tomography. Alternatively, this work proposes and evaluates the implementation of Raman spectroscopy to provide direct information on the effect of oxygen permeating through the walls of phantoms on the polymerization initiated by irradiation in three types of polymer gel dosimeters, namely NIPAM, ITABIS and PAGAT. The aim of the present study is to provide better and complete interpretations using three different containers, adequate for integral, 2D and 3D dose mapping. Moreover, Raman spectroscopy has been used to analyze the well-known effect of oxygen inhibition on the different polymer gel dosimeters remarking the importance of avoiding air exposition during sample storage and readout. Dose-response curves for different polymer gels were obtained in terms of measurements with a calibrated ionization chamber. Additionally, dedicated Monte Carlo simulations were performed aimed at characterizing dose for different X-ray irradiation setups, providing also suitable information to evaluate oxygen diffusion through the sample wall. The obtained results were contrasted with optical transmission readout as well as Monte Carlo simulations attaining very good agreements for all dosimeter types.