Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39063694

RESUMEN

We performed a machine learning-aided analysis of the rolling and recrystallization textures in pure iron with different cold reduction ratios and cold-rolling directions. Five types of specimens with different cold reduction ratios and cold-rolling directions were prepared. The effect of two-way cold-rolling on the rolling texture was small at cold reduction ratios different from 60%. The cold reduction ratio in each stage hardly affected the texture evolution during cold-rolling and subsequent short-term annealing. In the case of long-term annealing, although abnormal grain growth occurred, the crystal orientation of the grains varied. Moreover, the direction of cold-rolling in each stage also hardly affected the texture evolution during cold-rolling and subsequent short-term annealing. During long-term annealing, sheets with the same cold-rolling direction in the as-received state and in the first stage showed the texture evolution of conventional one-way cold-rolled pure iron. Additionally, we conducted a machine learning-aided analysis of rolling and recrystallization textures. Using cold-rolling and annealing conditions as the input data and the degree of Goss orientation development as the output data, we constructed high-accuracy regression models using artificial neural networks and XGBoost. We also revealed that the annealing temperature is the dominant factor in the nucleation of Goss grains.

2.
Materials (Basel) ; 15(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35591417

RESUMEN

The influence of cold-rolling directions on the recrystallization texture evolution of pure iron was examined. As-received pure iron sheets were cold-rolled under two different conditions (specimens A and B). Specimen A was cold-rolled in the vertical direction against the cold-rolling direction of the as-received sheet. Specimen B was cold-rolled in the vertical direction against the cold-rolling direction of the as-received sheet, and then in the cold-rolling direction of the as-received sheet. Cold-rolled specimens were heated to each desired temperature before being quenched in water to room temperature (298 ± 2 K). Both cold-rolled specimens showed the development of γ-fiber and {100}<011> orientation. Additionally, γ-fiber formed comparatively more in cold-rolled specimen A, while α-fiber developed comparatively more in cold-rolled specimen B. Strain distribution in cold-rolled specimen A was presumably inhomogeneous, whereas that in cold-rolled specimen B was rather uniform at the macro-scale. The formation of γ-fiber was confirmed in annealed specimen A. In annealed specimen B, however, the recrystallization texture tended to be random, and the formation of α-fiber was observed. Furthermore, the formation of Goss orientation in both annealed specimens was established. Recrystallized ferrite grains with Goss orientation nucleated in high strain regions of cold-rolled specimen. These findings show that by devising the cold-rolling direction, it is possible to discover new types of recrystallization textures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA