Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Cell Biochem ; 123(4): 782-797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106828

RESUMEN

Cancer cells grown as 3D-structures are better models for mimicking in vivo conditions than the 2D-culture systems employable in drug discovery applications. Cell cycle and cell death are important determinants for preclinical drug screening and tumor growth studies in laboratory conditions. Though several 3D-models and live-cell compatible approaches are available, a method for simultaneous real-time detection of cell cycle and cell death is required. Here we demonstrate a high-throughput adaptable method using genetically encoded fluorescent probes for the real-time quantitative detection of cell death and cell cycle. The cell-cycle indicator cdt1-Kusabira orange (KO) is stably integrated into cancer cells and further transfected with the Fluorescence Resonance Energy Transfer-based ECFP-DEVD-EYFP caspase activation sensor. The nuclear cdt1-KO expression serves as the readout for cell-cycle, and caspase activation is visualized by ECFP/EYFP ratiometric imaging. The image-based platform allowed imaging of growing spheres for prolonged periods in 3D-culture with excellent single-cell resolution through confocal microscopy. High-throughput screening (HTS) adaptation was achieved by targeting the caspase-sensor at the nucleus, which enabled the quantitation of cell death in 3D-models. The HTS using limited compound libraries, identified two lead compounds that induced caspase-activation both in 2D and 3D-cultures. This is the first report of an approach for noninvasive stain-free quantitative imaging of cell death and cell cycle with potential drug discovery applications.


Asunto(s)
Apoptosis , Transferencia Resonante de Energía de Fluorescencia , Apoptosis/fisiología , Caspasas/genética , Muerte Celular , División Celular , Transferencia Resonante de Energía de Fluorescencia/métodos
3.
Eur J Cell Biol ; 97(1): 1-14, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29092745

RESUMEN

The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 - Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP - LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Neoplasias Ováricas/patología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Microscopía Confocal , Mitocondrias/ultraestructura , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Células Tumorales Cultivadas
4.
Cell Death Discov ; 3: 16101, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28179996

RESUMEN

Apoptosis and necrosis are the two major forms of cell death mechanisms. Both forms of cell death are involved in several physiological and pathological conditions and also in the elimination of cancer cells following successful chemotherapy. Large number of cellular and biochemical assays have evolved to determine apoptosis or necrosis for qualitative and quantitative purposes. A closer analysis of the assays and their performance reveal the difficulty in using any of these methods as a confirmatory approach, owing to the secondary induction of necrosis in apoptotic cells. This highlights the essential requirement of an approach with a real-time analysis capability for discriminating the two forms of cell death. This paper describes a sensitive live cell-based method for distinguishing apoptosis and necrosis at single-cell level. The method uses cancer cells stably expressing genetically encoded FRET-based active caspase detection probe and DsRed fluorescent protein targeted to mitochondria. Caspase activation is visualized by loss of FRET upon cleavage of the FRET probe, while retention of mitochondrial fluorescence and loss of FRET probe before its cleavage confirms necrosis. The absence of cleavage as well as the retention of mitochondrial fluorescence indicates live cells. The method described here forms an extremely sensitive tool to visualize and quantify apoptosis and necrosis, which is adaptable for diverse microscopic, flow cytometric techniques and high-throughput imaging platforms with potential application in diverse areas of cell biology and oncology drug screening.

5.
Apoptosis ; 19(1): 269-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24220853

RESUMEN

Despite the use of new generation target specific drugs or combination treatments, drug-resistance caused by defective apoptosis signaling remains a major challenge in cancer treatment. A common apoptotic defect in drug-resistant tumor is the failure of cancer cells to undergo Bax/Bak-dependent mitochondrial permeabilization due to impaired signaling of Bcl-2 family proteins. Therefore, Bax and Bak-independent caspase-activating compounds appear to be effective in killing such tumor cells. An image-based cellular platform of caspase sensors in Bax and Bak deficient background allowed us to identify several potential Bax/Bak-independent caspase-activating compounds from a limited high-throughput compound screening. FRET-based caspase sensor probe targeted at the nucleus enabled accurate and automated segmentation, yielding a Z-value of 0.72. Some of the positive hits showed promising activity against drug-resistant human cancer cells expressing high levels of Bcl-2 or Bcl-xL. Using this approach, we describe thiolutin, CD437 and TPEN as the most potentially valuable drug candidates for addressing drug-resistance caused by aberrant expression of Bcl-2 family proteins in tumor cells. The screen also enables the quantification of multiparameter apoptotic events along with caspase activation in HTS manner in live mode, allowing characterization of non-classical apoptosis signaling.


Asunto(s)
Antineoplásicos/farmacología , Caspasas/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Activación Enzimática/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
6.
PLoS One ; 8(4): e59350, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593137

RESUMEN

Fluorescent protein based signaling probes are emerging as valuable tools to study cell signaling because of their ability to provide spatio- temporal information in non invasive live cell mode. Previously, multiple fluorescent protein probes were employed to characterize key events of apoptosis in diverse experimental systems. We have employed a live cell image based approach to visualize the key events of apoptosis signaling induced by zerumbone, the active principle from ginger Zingiber zerumbet, in cancer cells that enabled us to analyze prominent apoptotic changes in a hierarchical manner with temporal resolution. Our studies substantiate that mitochondrial permeabilisation and cytochrome c dependent caspase activation dominate in zerumbone induced cell death. Bax activation, the essential and early event of cell death, is independently activated by reactive oxygen species as well as calpains. Zerumbone failed to induce apoptosis or mitochondrial permeabilisation in Bax knockout cells and over-expression of Bax enhanced cell death induced by zerumbone confirming the essential role of Bax for mitochondrial permeabilsation. Simultaneous inhibition of reactive oxygen species and calpain is required for preventing Bax activation and cell death. However, apoptosis induced by zerumbone was prevented in Bcl 2 and Bcl-XL over-expressing cells, whereas more protection was afforded by Bcl 2 specifically targeted to endoplasmic reticulum. Even though zerumbone treatment down-regulated survival proteins such as XIAP, Survivin and Akt, it failed to affect the pro-apoptotic proteins such as PUMA and BIM. Multiple normal diploid cell lines were employed to address cytotoxic activity of zerumbone and, in general, mammary epithelial cells, endothelial progenitor cells and smooth muscle cells were relatively resistant to zerumbone induced cell death with lesser ROS accumulation than cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Calpaína/metabolismo , Caspasas/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/farmacología , Proteína X Asociada a bcl-2/metabolismo , Calcio/metabolismo , Línea Celular , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Citocromos c/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sesquiterpenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA