Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126582

RESUMEN

Hydroquinone (HQ) is a phenolic compound used in industry processes. We aim to demonstrate a rapid and simple procedure for the determination of HQ. This work has developed two techniques, including colorimetric and electrochemical sensors on paper-based devices. Firstly, we have developed the colorimetric detection for the rapid screening test of HQ using 1.5% 4-(dimethylamino) benzaldehyde with alkaline condition (5 M NaOH). Under suitable conditions, the calibration curve between the intensity and HQ concentration was in the range of 50-500 mg L-1. Then, we developed a multi-walled carbon nanotube/graphene oxide/copper/palladium/platinum (MWCNT/GO/Cu/Pd/Pt) onto a screen-printed carbon electrode (SPCE). The optimal amount of MWCNT/GO/Cu/Pd/Pt nanomaterial is 2 mg for HQ detection. The linear concentration range was found in the range 1 to 20 mg L-1 and a detection limit was found to be 0.40 mg L-1 (3.6 µM) for HQ. Moreover, the proposed device can be applied to determine HQ in real samples and is inexpensive technique, portable, and low consumer time.

2.
Analyst ; 148(19): 4753-4761, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37655604

RESUMEN

We created novel Pd/CB-Ni@rGO nanomaterials for glucose detection. The as-synthesized nanomaterials were dropped on the electrode surface using the drop casting technique. The prepared electrode was then attached to a paper-based device containing the sample zone and the reaction zone, enabling plasma isolation and an enzymatic reaction for glucose detection in whole blood. The nanomaterials and surfaces of electrodes were characterized by FTIR, TEM, and SEM. The proposed approach is a disposable glucose detection method that is unaffected by protein fouling on the electrode, and it requires only one drop of human blood. Therefore, there is no need for extensive sample preparation, and there is less sample consumption. Under optimal conditions, Pd/CB-Ni@rGO can accurately measure blood glucose levels with a linear range of 7 to 7140 µM (R2 = 0.9986) and a low detection limit of 0.82 µM. Besides, the developed sensor shows excellent anti-interference capacity, stability, and satisfactory reproducibility and repeatability. Importantly, Pd/CB-Ni@rGO was successfully applied for glucose in whole blood from 4 volunteers, with results that correlated well with those obtained using an Accucheck glucometer at a 95% confidence level. Given its low cost, high accuracy, and ease of use, the blood glucose sensor holds significant potential for clinical use and broadens the area of future noninvasive sensor development.


Asunto(s)
Técnicas Biosensibles , Grafito , Humanos , Glucemia , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Glucosa , Grafito/química , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA