Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transgenic Res ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120800

RESUMEN

Root-specific or preferential promoters are essential to genetically modify plants with beneficial root traits. We have characterised the promoter from an oil palm metallothionein gene (EgMT) and performed a serial 5' deletion analysis to identify the region(s) essential for transgenes expression in roots. Stable functional characterisation of tobacco transgenic lines using the T1 generation showed that a deletion construct, designated as RSP-2D (1107 bp), directed strong GUS expression at all stages of root development, particularly in mature roots. Other constructs, RSP-2A (2481 bp) and RSP-2C (1639 bp), drove GUS expression in roots with an intensity lower than RSP-2D. The promoter activity was also detectable in seed pods and immature seeds, albeit at lower levels than CaMV35S. The promoter activity may also be induced by wounding as intact GUS staining was observed at the flower- and leaf-cutting sites of T1 samples carrying either RSP-2C or RSP-2D constructs. The promoter sequence contains cis-acting elements that may act as negative regulators and be responsible for root specificity. The results further indicated that the 5' UTR and ATATT sequences are essential for strong promoter activity. This study highlights the potential of RSP-2D promoter as a tool for modifying root traits through genetic engineering.

2.
Plant Cell Physiol ; 61(4): 735-747, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883014

RESUMEN

Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.


Asunto(s)
Inhibidor de la Unión a Diazepam/genética , Regulación de la Expresión Génica de las Plantas , Aceite de Palma/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arecaceae/genética , Arecaceae/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Endospermo/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Transcriptoma
3.
Plant Physiol Biochem ; 49(7): 701-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21549610

RESUMEN

We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.


Asunto(s)
Arecaceae/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Secuencia de Aminoácidos , Arecaceae/citología , Arecaceae/fisiología , Secuencia de Bases , Biolística , Northern Blotting , Clonación Molecular , ADN de Plantas/química , ADN de Plantas/genética , Flores/genética , Flores/fisiología , Genes Reporteros , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Plásmidos/genética , Reacción en Cadena de la Polimerasa , ARN de Planta/genética , Análisis de Secuencia de ADN , Estrés Fisiológico , Nicotiana/genética , Nicotiana/fisiología
4.
N Biotechnol ; 27(4): 289-99, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20123048

RESUMEN

The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.


Asunto(s)
Arecaceae/genética , Genes de Plantas/genética , Aceites de Plantas/metabolismo , Regiones Promotoras Genéticas , Ubiquitina/genética , Ácido Abscísico/farmacología , Arecaceae/citología , Arecaceae/efectos de los fármacos , Secuencia de Bases , Northern Blotting , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/metabolismo , Inmunohistoquímica , Ácidos Indolacéticos/farmacología , Datos de Secuencia Molecular , Aceite de Palma , Plásmidos/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA