Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 749, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907558

RESUMEN

A reliable and accurate long-term rainfall dataset is an indispensable resource for climatological studies and crucial for application in water resource management, agriculture, and hydrology. SM2RAIN (Soil Moisture to Rain) derived datasets stand out as a unique and wholly independent global product that estimates rainfall from satellite soil moisture observations. Previous studies have demonstrated the SM2RAIN products' high potential in estimating rainfall around the world. This manuscript describes the SM2RAIN-Climate rainfall product, which uses the European Space Agency (ESA) Climate Change Initiative (CCI) soil moisture v06.1 to provide monthly global rainfall for the 24-year period 1998-2021 at 1-degree spatial resolution. The assessment of the proposed rainfall dataset against different existing state-of-the-art rainfall products exhibits the robust performance of SM2RAIN-Climate in most regions of the world. This performance is indicated by correlation coefficients between SM2RAIN-Climate and state-of-the-art products, consistently exceeding 0.8. Moreover, evaluation results indicate the potential of SM2RAIN-Climate as an independent rainfall product from other satellite rainfall products in capturing the pattern of global rainfall trend.

2.
Sci Total Environ ; 873: 162396, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841410

RESUMEN

Satellite-based observations of soil moisture, leaf area index, precipitation, and evapotranspiration facilitate agro-hydrological modeling thanks to the spatially distributed information. In this study, the Climate Change Initiative Soil Moisture dataset (CCI SM, a product of the European Space Agency (ESA)) adjusted based on Soil Water Index (SWI) was used as an additional (in relation to discharge) observed dataset in agro-hydrological modeling over a large-scale transboundary river basin (Odra River Basin) in the Baltic Sea region. This basin is located in Central Europe within Poland, Czech Republic, and Germany and drains into the Baltic Sea. The Soil and Water Assessment Tool+ (SWAT+) model was selected for agro-hydrological modeling, and measured data from 26 river discharge stations and soil moisture from CCI SM (for topsoil and entire soil profile) over 1476 sub-basins were used in model calibration for the period 1997-2019. Kling-Gupta efficiency (KGE) and SPAtial EFficiency (SPAEF) indices were chosen as objective functions for runoff and soil moisture calibration, respectively. Two calibration strategies were compared: one involving only river discharge data (single-objective - SO), and the second one involving river discharge and satellite-based soil moisture (multi-objective - MO). In the SO approach, the average KGE for discharge was above 0.60, whereas in the MO approach, it increased to 0.67. The SPAEF values showed that SWAT+ has acceptable accuracy in soil moisture simulations. Moreover, crop yield assessments showed that MO calibration also increases the crop yield simulation accuracy. The results show that in this transboundary river basin, adding satellite-based soil moisture into the calibration process could improve the accuracy and consistency of agro-hydrological modeling.

3.
Sci Rep ; 12(1): 18920, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344815

RESUMEN

River flooding has large societal and economic impacts across Africa. Despite the importance of this topic, little is known about the main flood generating mechanisms in Africa. This study is based on 13,815 flood events that occurred between 1981 and 2018 in 529 catchments. These flood events are classified to identify the different flood drivers: excess rains, long rains and short rains. Out of them, excess rains on saturated soils in Western Africa, and long rains for catchments in Northern and Southern Africa, are the two dominant mechanisms, contributing to more than 75% of all flood events. The aridity index is strongly related to the spatial repartition of the different flood generating processes showing the climatic controls on floods. Few significant changes were detected in the relative importance of these drivers over time, but the rather short time series available prevent a robust assessment of flood driver changes in most catchments. The major implication of these results is to underline the importance of soil moisture dynamics, in addition to rainfall, to analyze the evolution of flood hazards in Africa.


Asunto(s)
Inundaciones , Ríos , Lluvia , África Austral , África Occidental
4.
J Hydrol (Amst) ; 5812020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33154604

RESUMEN

In runoff generation process, soil moisture plays an important role as it controls the magnitude of the flood events in response to the rainfall inputs. In this study, we investigated the ability of a new era of satellite soil moisture retrievals to improve the Soil & Water Assessment Tool (SWAT) daily discharge simulations via soil moisture data assimilation for two small (< 500 km2) and hydrologically different catchments located in Central Italy. We ingested 1) the Soil Moisture Active and Passive (SMAP) Enhanced L3 Radiometer Global Daily 9 km EASE-Grid soil moisture, 2) the Advanced SCATterometer (ASCAT) H113 soil moisture product released within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) which has a nearly daily temporal resolution and sampling of 12.5 km, and 3) a fused ASCAT/Sentinel-1 (S1) satellite soil moisture product named SCATSAR-SWI with temporal and spatial sampling of 1 day and 1 km, respectively into SWAT hydrological model via the Ensemble Kalman Filter (EnKF). Different configurations were tested with the aim of exploring the effect of the hydrological regime, the land use conditions, the spatial sampling and the revisit time of the products (which controls the amount of available data to be potentially ingested). Results show a general improvement of SWAT discharge simulations for all products in terms of error and Nash Sutcliffe efficiency index. In particular, we found a relatively good behavior of both the active and the passive products in terms of low flows improvement especially for the catchment characterized by a higher baseflow component. The benefit of the higher spatial resolution of SCATSAR-SWI obtained via S1 over ASCAT was small, likely due to very challenging areas for the S1 retrieval. Eventually, better performances were obtained for the passive product in the more forested catchment. With the aim of exploring the benefit of having more frequent satellite soil moisture observations to be ingested, we tested the performance of the ASCAT product with a reduced temporal sampling obtained by temporally matching ASCAT observations to that of SMAP. The results show a significant reduction of the performance of ASCAT, suggesting that the correction frequency (due to the higher number of observations available) for small catchments is an important aspect for improving flood forecasting as it helps to adjust more frequently the pre-storm soil moisture conditions.

5.
Sci Rep ; 10(1): 12517, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719498

RESUMEN

Satellite precipitation products have been largely improved in the recent years particularly with the launch of the global precipitation measurement (GPM) core satellite. Moreover, the development of techniques for exploiting the information provided by satellite soil moisture to complement/enhance precipitation products have improved the accuracy of accumulated rainfall estimates over land. Such satellite enhanced precipitation products, available with a short latency (< 1 day), represent an important and new source of information for river flow prediction and water resources management, particularly in developing countries in which ground observations are scarcely available and the access to such data is not always ensured. In this study, three recently developed rainfall products obtained from the integration of GPM rainfall and satellite soil moisture products have been used; namely GPM+SM2RAIN, PRISM-SMOS, and PRISM-SMAP. The prediction of observed daily river discharge at 10 basins located in Europe (4), West Africa (3) and South Africa (3) is carried out. For comparison, we have also considered three rainfall products based on: (1) GPM only, i.e., the Early Run version of the Integrated Multi-Satellite Retrievals for GPM (GPM-ER), (2) rain gauges, i.e., the Global Precipitation Climatology Centre, and (3) the latest European Centre for Medium-Range Weather Forecasts reanalysis, ERA5. Three different conceptual and lumped rainfall-runoff models are employed to obtain robust and reliable results over the 3-year data period 2015-2017. Results indicate that, particularly over scarcely gauged areas (West Africa), the integrated products outperform both ground- and reanalysis-based rainfall estimates. For all basins, the GPM+SM2RAIN product is performing the best among the short latency products with mean Kling-Gupta Efficiency (KGE) equal to 0.87, and significantly better than GPM-ER (mean KGE = 0.77). The integrated products are found to reproduce particularly well the high flows. These results highlight the strong need to disseminate such integrated satellite rainfall products for hydrological (and agricultural) applications in poorly gauged areas such as Africa and South America.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA