Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959046

RESUMEN

Three Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.

2.
Sci Data ; 9(1): 781, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566270

RESUMEN

An increasing number of cities are interested in deep geothermal energy in order to increase the share of renewable energies in their district heating networks. To reduce the risks related to deep geothermal energy operations, reliable digital models are needed: they make it possible to predict the depth of aquifers away from borehole locations, and their thermal and hydrological evolution by supporting detailed water and heat flow simulations. This paper presents a 3D geomodel developed for this purpose in the southern Paris Basin of France in the Orléans area. The 3D geomodel integrates various data such as reprocessed and interpreted seismic lines, well data, and a pre-existing larger-scale and lower-resolution 3D geological model. The resulting 3D geomodel gives a new and reliable representation of the main aquifers underlying the study area. Within the framework of the project, hydrological and thermal simulations were then performed based on this 3D geomodel. Other environmental investigations (e.g. CO2 storage) and teaching/communication activities could also benefit from the dataset.

3.
Foods ; 11(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35206089

RESUMEN

Kombucha is a traditional drink obtained from sugared tea that is transformed by a community of yeasts and bacteria. Its production has become industrialized, and the study of the microbial community's evolution is needed to improve control over the process. This study followed the microbial composition of black and green kombucha tea over three consecutive years in a production facility using a culture-dependent method. Microorganisms were isolated and cultivated using selective agar media. The DNA of isolates was extracted, amplified using 26S and 16S PCR, and sequenced. Identities were obtained after a comparison to the NCBI database. Dekkera/Brettanomyces bruxellensis, Hanseniaspora valbyensis and Saccharomyces cerevisiae were the major yeast species, and the major bacterial genera were Acetobacter and Liquorilactobacillus. Results highlight the persistence of yeast species such as B. bruxellensis detected in 2019. Some yeasts species appeared to be sensitive towards stressful events, such as a hot period in 2019. However, they were resilient and isolated again in 2021, as was the case for H. valbyensis. Dominance of B. bruxellensis was clear in green and black tea kombucha, but proportions in yeasts varied depending on tea type and phase (liquid or biofilm). Composition in acetic acid and lactic acid bacteria showed a higher variability than yeasts with many changes in species over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA