Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 1595, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849332

RESUMEN

Fusarium graminearum is a phytopathogenic fungus that causes Fusarium head blight in small-grain cereals, such as wheat, with significant yield reductions. Moreover, it contaminates the cereal grains with health-threatening mycotoxins, such as deoxynivalenol (DON), jeopardizing food and feed safety. Plant-based biopesticides, i.e. botanicals, have recently gained increased interest in crop protection as alternatives to synthetic chemical products. The main objective of this study was to test the control efficacy of botanicals based on white or Indian/Oriental mustard seed flours (Tillecur - Ti, Pure Yellow Mustard - PYM, Pure Oriental Mustard - POM, Oriental Mustard Bran - OMB) on F. graminearum infection and mycotoxin accumulation in wheat grain. Botanicals at 2% concentration showed a higher efficacy in inhibiting mycelium growth in vitro compared with a prothioconazole fungicide (F). In the growth chamber experiment under controlled conditions, the spraying agents reduced DON content in grain in the following order: F = Ti = PYM > POM > OMB. The antifungal activity of the botanicals may be attributed to their bioactive matrices containing isothiocyanates (ITCs) and phenolic acids. Allyl ITC was detected in POM and OMB at 8.38 and 4.48 mg g-1, while p-hydroxybenzyl ITC was found in Ti and PYM at 2.56 and 2.44 mg g-1, respectively. Considerable amounts of various phenolic acids were detected in all botanicals. Under field conditions, only the use of F significantly decreased F. graminearum infection and DON content in grain. An additional important finding of this study is that disease control was more difficult when infection was done with ascospores than conidia, which might have several potential implications considering that ascospores are more important in Fusarium head blight epidemics. Our results suggest that mustard-based botanicals are promising biopesticides for the control of Fusarium head blight in small-grain cereals, but for field applications, an appropriate formulation is necessary to stabilize and prolong the antifungal activity, especially against ascospores.

2.
Ecol Appl ; 30(6): e02133, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32299121

RESUMEN

Seminatural grasslands are important biodiversity hotspots, but they are increasingly degraded by intensive agriculture. Grassland restoration is considered to be promising in halting the ongoing loss of biodiversity, but this evaluation is mostly based on plant communities. Insect herbivores contribute substantially to grassland biodiversity and to the provisioning of a variety of ecosystem functions. However, it is unclear how they respond to different measures that are commonly used to restore seminatural grasslands from intensively used agricultural land. We studied the long-term success of different restoration techniques, which were originally targeted at reestablishing seminatural grassland plant communities, for herbivorous insect communities on taxonomic as well as functional level. Therefore, we sampled insect communities 22 yr after the establishment of restoration measures. These measures ranged from harvest and removal of biomass to removal of the topsoil layer and subsequent seeding of plant propagules. We found that insect communities in restored grasslands had higher taxonomic and functional diversity compared to intensively managed agricultural grasslands and were more similar in composition to target grasslands. Restoration measures including topsoil removal proved to be more effective, in particular in restoring species characterized by functional traits susceptible to intensive agriculture (e.g., large-bodied species). Our study shows that long-term success in the restoration of herbivorous insect communities of seminatural grasslands can be achieved by different restoration measures and that more invasive approaches that involve the removal of the topsoil layer are more effective. We attribute these restoration successes to accompanying changes in the plant community, resulting in bottom-up control of the herbivore community. Our results are of critical importance for management decisions aiming to restore multi-trophic communities, their functional composition and consequently the proliferation of ecosystem functions.


Asunto(s)
Pradera , Herbivoria , Animales , Biodiversidad , Ecosistema , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA