Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400639, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155797

RESUMEN

Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti3C2Tx MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti3C2Tx MXene display changes in chemical bonding and electrolyte ion distribution.

2.
Nat Commun ; 14(1): 374, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690615

RESUMEN

Pseudocapacitive charge storage in Ti3C2Tx MXenes in acid electrolytes is typically described as involving proton intercalation/deintercalation accompanied by redox switching of the Ti centres and protonation/deprotonation of oxygen functional groups. Here we conduct nanoscale electrochemical measurements in a unique experimental configuration, restricting the electrochemical contact area to a small subregion (0.3 µm2) of a monolayer Ti3C2Tx flake. In this unique configuration, proton intercalation into interlayer spaces is not possible, and surface processes are isolated from the bulk processes, characteristic of macroscale electrodes. Analysis of the pseudocapacitive response of differently sized MXene flakes indicates that entire MXene flakes are charged through electrochemical contact of only a small basal plane subregion, corresponding to as little as 3% of the flake surface area. Our observation of pseudocapacitive charging outside the electrochemical contact area is suggestive of a fast transport of protons mechanism across the MXene surface.


Asunto(s)
Oxígeno , Protones , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA