Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 8(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36005090

RESUMEN

Laboratories and industries that handle chemicals are ubiquitously prone to leakages. These may occur in storage rooms, cabinets or even in temporary locations, such as workbenches and shelves. A relevant number of these chemicals are corrosive, thus commercial products already exist to prevent material damage and injuries. One strategy consists of the use of absorbing mats, where few display neutralizing properties, and even less a controlled neutralization. Nevertheless, to the authors' knowledge, the commercially available neutralizing mats are solely dedicated to neutralizing acid or alkali solutions, never both. Therefore, this work describes the development and proof of a completely novel concept, where a dual component active mat (DCAM) is able to perform a controlled simultaneous neutralization of acid and alkali leakages by using microencapsulated active components. Moreover, its active components comprise food-grade ingredients, embedded in nonwoven polypropylene. The acid neutralizing mats contain sodium carbonate (Na2CO3) encapsulated in sodium alginate microcapsules (MC-ASC). Alkali neutralizing mats possess commercial encapsulated citric acid in hydrogenated palm oil (MIRCAP CT 85-H). A DCAM encompasses both MC-ASC and MIRCAP CT 85-H and was able to neutralize solutions up to 10% (v/v) of hydrochloric acid (HCl) and sodium hydroxide (NaOH). The efficacy of the neutralization was assessed by direct titration and using pH strip measurement tests to simulate the leakages. Due to the complexity of neutralization efficacy evaluation based solely on pH value, a thorough conductivity study was performed. DCAM reduced the conductivity of HCl and NaOH (1% and 2% (v/v)) in over 70%. The composites were characterized by scanning electron microscopy (SEM), differential calorimetry (DSC) and thermogravimetric analysis (TGA). The size of MC-ASC microcapsules ranged from 2 µm to 8 µm. Finally, all mat components displayed thermal stability above 150 °C.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35457722

RESUMEN

Almost two years have passed since COVID-19 was officially declared a pandemic by the World Health Organization. However, it still holds a tight grasp on the entire human population. Several variants of concern, one after another, have spread throughout the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant may become the fastest spreading virus in history. Therefore, it is more than evident that the use of personal protective equipment (PPE) will continue to play a pivotal role during the current pandemic. This work depicts an integrative approach attesting to the effectiveness of ultra-violet-C (UV-C) energy density for the sterilization of personal protective equipment, in particular FFP2 respirators used by the health care staff in intensive care units. It is increasingly clear that this approach should not be limited to health care units. Due to the record-breaking spreading rates of SARS-CoV-2, it is apparent that the use of PPE, in particular masks and respirators, will remain a critical tool to mitigate future pandemics. Therefore, similar UV-C disinfecting rooms should be considered for use within institutions and companies and even incorporated within household devices to avoid PPE shortages and, most importantly, to reduce environmental burdens.


Asunto(s)
COVID-19 , Dispositivos de Protección Respiratoria , COVID-19/epidemiología , COVID-19/prevención & control , Hospitales , Humanos , Equipo de Protección Personal , Portugal , SARS-CoV-2 , Ventiladores Mecánicos
3.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214242

RESUMEN

A linear electromagnetic energy harvesting device for underwater applications, fabricated with a simple manufacturing process, was developed to operate with movement frequencies from 0.1 to 0.4 Hz. The generator has two coils, and the effect of the combination of the two coils was investigated. The experimental study has shown that the energy capture system was able to supply energy to several ocean sensors, producing 7.77 mJ per second with wave movements at 0.4 Hz. This study shows that this energy is enough to restore the energy used by the battery or the capacitor and continue supplying energy to the sensors used in the experimental work. For an ocean wave frequency of 0.4 Hz, the generator can supply power to 8 sensors or 48 sensors, depending on the energy consumed and its optimization.


Asunto(s)
Suministros de Energía Eléctrica , Movimiento , Fenómenos Físicos
4.
Sensors (Basel) ; 21(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451087

RESUMEN

The advanced and widespread use of microfluidic devices, which are usually fabricated in polydimethylsiloxane (PDMS), requires the integration of many sensors, always compatible with microfluidic fabrication processes. Moreover, current limitations of the existing optical and electrochemical oxygen sensors regarding long-term stability due to sensor degradation, biofouling, fabrication processes and cost have led to the development of new approaches. Thus, this manuscript reports the development, fabrication and characterization of a low-cost and highly sensitive dissolved oxygen optical sensor based on a membrane of PDMS doped with platinum octaethylporphyrin (PtOEP) film, fabricated using standard microfluidic materials and processes. The excellent mechanical and chemical properties (high permeability to oxygen, anti-biofouling characteristics) of PDMS result in membranes with superior sensitivity compared with other matrix materials. The wide use of PtOEP in sensing applications, due to its advantage of being easily synthesized using microtechnologies, its strong phosphorescence at room temperature with a quantum yield close to 50%, its excellent Strokes Shift as well as its relatively long lifetime (75 µs), provide the suitable conditions for the development of a miniaturized luminescence optical oxygen sensor allowing long-term applications. The influence of the PDMS film thickness (0.1-2.5 mm) and the PtOEP concentration (363, 545, 727 ppm) in luminescent properties are presented. This enables to achieve low detection levels in a gas media range from 0.5% up to 20%, and in liquid media from 0.5 mg/L up to 3.3 mg/L at 1 atm, 25 °C. As a result, we propose a simple and cost-effective system based on a LED membrane photodiode system to detect low oxygen concentrations for in situ applications.


Asunto(s)
Platino (Metal) , Porfirinas , Dimetilpolisiloxanos , Oxígeno
6.
Sensors (Basel) ; 19(18)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527406

RESUMEN

The advances in wireless communications are still very limited when intended to be used on Underwater Communication Systems mainly due to the adverse proprieties of the submarine channel to the acoustic and radio frequency (RF) waves propagation. This work describes the development and characterization of a polyvinylidene difluoride ultrasound transducer to be used as an emitter in underwater wireless communications. The transducer has a beam up to 10° × 70° degrees and a usable frequency band up to 1 MHz. The transducer was designed using Finite Elements Methods and compared with real measurements. Pool trials show a transmitting voltage response (TVR) of approximately 150 dB re µPa/V@1 m from 750 kHz to 1 MHz. Sea trials were carried in Ria Formosa, Faro (Portugal) over a 15 m source-receiver communication link. All the signals were successfully detected by cross-correlation using 10 chirp signals between 10 to 900 kHz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA