RESUMEN
Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-ß-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations.
Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Humanos , Colistina/farmacología , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genéticaRESUMEN
The first cases of bla NDM in Argentina were detected in three Providencia rettgeri (Pre) recovered from two hospitals in Buenos Aires city in 2013. The isolates were genetically related, but the plasmid profile was different. Here, we characterized the bla NDM-1-harboring plasmids of the first three cases detected in Argentina. Hybrid assembly obtained from short- and long-read sequencing rendered bla NDM-1 in Col3M plasmids of ca. 320 kb (p15268A_320) in isolate PreM15268, 210 kb (p15758B_210) in PreM15758, and 225 kb (p15973A_225) in PreM15973. In addition, PreM15758 harbored a 98-kb circular plasmid (p15758C_98) flanked by a putative recombination site (hin-TnAs2), with 100% nucleotide ID and coverage with p15628A_320. Analysis of PFGE/S1-nuclease gel, Southern hybridization with bla NDM-1 probe, hybrid assembly of short and long reads suggests that pM15758C_98 can integrate by homologous recombination. The three bla NDM-1-plasmids were non-conjugative in vitro. Moreover, tra genes were incomplete, and oriT was not found in the three bla NDM-1-plasmids. In two isolates, blaNDM-1 was embedded in a partially conserved structure flanked by two ISKox2. In addition, all plasmids harbored aph(3')-Ia, aph(3')-VI, and qnrD1 genes and aac(6´)Ib-cr, bla OXA-1, catB3, and arr3 as part of a class 1 integron. Also, p15268A_320 and p15973A_225 harbored bla PER-2. To the best of our knowledge, this is the first report of clinical P. rettgeri harboring blaNDM-1 in an atypical genetic environment and located in unusual chimeric Col3M plasmids. The study and continuous surveillance of these pathogens are crucial to tracking the evolution of these resistant plasmids and finding solutions to tackle their dissemination. IMPORTANCE Infections caused by carbapenem hydrolyzing enzymes like NDM (New Delhi metallo-beta-lactamase) represent a serious problem worldwide because they restrict available treatment options and increase morbidity and mortality, and treatment failure prolongs hospital stays. The first three cases of NDM in Argentina were caused by genetically related P. rettgeri recovered in two hospitals. In this work, we studied the genetic structure of the plasmids encoding bla NDM in those index cases and revealed the enormous plasticity of these genetic elements. In particular, we found a small plasmid that was also found inserted in the larger plasmids by homologous recombination as a co-integrate element. We also found that the bla NDM plasmids were not able to transfer or move to other hosts, suggesting their role as reservoir elements for the acquisition of resistance genes. It is necessary to unravel the dissemination strategies and the evolution of these resistant plasmids to find solutions to tackle their spread.
RESUMEN
BACKGROUND: The global spread of carbapenemase-producing Enterobacterales has become an epidemiological risk for healthcare systems by limiting available antimicrobial treatments. The COVID-19 pandemic worsened this scenario, prompting the emergence of extremely resistant microorganisms. METHODS: Between March 2020 and September 2021, the NRL confirmed 82 clinical Enterobacterales isolates harboring a combination of blaKPC and MBL genes. Molecular typing was analyzed by PFGE and MLST. Modified double-disk synergy (MDDS) tests were used for phenotypic studies. RESULTS: Isolates were submitted from 28 hospitals located in seven provinces and Buenos Aires City, including 77 K. pneumoniae, 2 K. oxytoca, 2 C. freundii, and 1 E. coli. Almost half of K. pneumoniae isolates (n = 38; 49.4%), detected in 15 hospitals, belong to the CC307 clone. CC11 was the second clone, including 29 (37.7%) isolates (22, ST11 and 7, ST258) from five cities and 12 hospitals. Three isolates belonging to CC45 were also detected. The carbapenemase combinations observed were as follows: 55% blaKPC-2 plus blaNDM-5; 32.5% blaKPC-2 plus blaNDM-1; 5% blaKPC-3 plus blaNDM-1; 5% blaKPC-2 plus blaIMP-8; and 2.5% strain with blaKPC-2 plus blaNDM-5 plus blaOXA-163. Aztreonam/avibactam and aztreonam/relebactam were the most active combinations (100% and 91% susceptible, respectively), followed by fosfomycin (89%) and tigecycline (84%). CONCLUSIONS: The MDDS tests using ceftazidime-avibactam/EDTA and aztreonam/boronic acid disks improved phenotypic classification as dual producers. The successful high-risk clones of K. pneumoniae, such as hyper-epidemic CC307 and CC11 clones, drove the dissemination of double carbapenemase-producing isolates during the COVID-19 pandemic.
RESUMEN
Acinetobacter spp. are opportunistic pathogens being A. baumannii the most frequently identified in nosocomial settings. A. ursingii was mainly described as causing bacteremia and outbreaks in neonatal intensive care units. Ten A. ursingii isolates were recovered from rectal swab screening for carbapenemase-producing bacteria between June 2013 and December 2015 from a children hospital in Argentina. All ten isolates were metallo-ß-lactamase-producing, nine were positive for blaIMP-1 and one for blaNDM-1. IMP-positive isolates were also positive for blaOXA-58 gene. All isolates were susceptible to ciprofloxacin, colistin and minocycline, and nine were susceptible to ampicillin-sulbactam and gentamicin. Two A. ursingii displayed high level of resistance to aztreonam associated with blaCTX-M-15 in one isolate, and blaVEB-1 in the other. Eight SmaI-PFGE patterns were recognized. We evaluated the usefulness of Acinetobacter MLST-Pasteur scheme, to analyse A. ursingii isolates, however the rpoB gene was not amplified. A new set of primers were designed for specific amplification and sequencing, allowing the analysis of rpoB gene for this species. New alleles and the sequence types 748, 749, 750, 751, 993, 1186, 1187, and 1189 were included at the Acinetobacter MLST-Pasteur database. Those isolates showing related PFGE patterns were assigned to the same ST. To the best of our knowledge, this is the first report of MBL-producing A. ursingii in Argentina. The inclusion of A. ursingii species to the Acinetobacter MLST-Pasteur scheme allows deeper molecular characterization and a better understanding about the epidemiology of this germen.
Asunto(s)
Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , Acinetobacter/genética , Infección Hospitalaria , beta-Lactamasas/genética , Acinetobacter/clasificación , Acinetobacter/efectos de los fármacos , Infecciones por Acinetobacter/tratamiento farmacológico , Antibacterianos/farmacología , Argentina/epidemiología , Niño , Electroforesis en Gel de Campo Pulsado , Hospitales Pediátricos , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Filogenia , Resistencia betalactámicaRESUMEN
qnrE1, found in a clinical Klebsiella pneumoniae isolate, was undetectable by PCR assays used for the six qnr families. qnrE1 was located on a conjugative plasmid (ca. 185 kb) and differed from qnrB alleles by 25%. Phylogenetic reconstructions of qnr genes and proteins and analysis of the qnrE1 surroundings showed that this gene belongs to a new qnr family and was likely mobilized by ISEcp1 from the chromosome of Enterobacter spp. to plasmids of K. pneumoniae.