Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
2.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268369

RESUMEN

T lymphocyte activation requires the formation of immune synapses (IS) with antigen-presenting cells. The dynamics of membrane receptors, signaling scaffolds, microfilaments, and microtubules at the IS determine the potency of T cell activation and subsequent immune response. Here, we show that the cytosolic chaperonin CCT (chaperonin-containing TCP1) controls the changes in reciprocal orientation of the centrioles and polarization of the tubulin dynamics induced by T cell receptor in T lymphocytes forming an IS. CCT also controls the mitochondrial ultrastructure and the metabolic status of T cells, regulating the de novo synthesis of tubulin as well as posttranslational modifications (poly-glutamylation, acetylation, Δ1 and Δ2) of αß-tubulin heterodimers, fine-tuning tubulin dynamics. These changes ultimately determine the function and organization of the centrioles, as shown by three-dimensional reconstruction of resting and stimulated primary T cells using cryo-soft x-ray tomography. Through this mechanism, CCT governs T cell activation and polarity.


Asunto(s)
Chaperonina con TCP-1 , Tubulina (Proteína) , Centriolos/metabolismo , Chaperonina con TCP-1/metabolismo , Microtúbulos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Tubulina (Proteína)/química
3.
Immunol Lett ; 209: 11-20, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30954509

RESUMEN

Cell-cell communication comprises a variety of molecular mechanisms that immune cells use to respond appropriately to diverse pathogenic stimuli. T lymphocytes polarize in response to different stimuli, such as cytokines, adhesion to specific ligands and cognate antigens presented in the context of MHC. Polarization takes different shapes, from migratory front-back polarization to the formation of immune synapses (IS). The formation of IS between a T cell and an antigen-presenting cell involves early events of receptor-ligand interaction leading to the reorganization of the plasma membrane and the cytoskeleton to orchestrate vesicular and endosomal traffic and directed secretion of several types of mediators, including cytokines and nanovesicles. Cell polarization involves the repositioning of many subcellular organelles, including the endosomal compartment, which becomes an effective platform for the shuttling of molecules as vesicular cargoes that lately will be secreted to transfer information to antigen-presenting cells. Overall, the polarized interaction between a T cell and APC modifies the recipient cell in different ways that are likely lineage-dependent, e.g. dendritic cells, B cells or even other T cells. In this review, we will discuss the mechanisms that mediate the polarization of different membrane receptors, cytoskeletal components and organelles in T cells in a variety of immune contexts.


Asunto(s)
Comunicación Celular/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Citocinas/metabolismo , Citoesqueleto/metabolismo , Endosomas/metabolismo , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Mitocondrias/metabolismo , Receptores de Antígenos de Linfocitos T , Vesículas Transportadoras/metabolismo
4.
Mol Cell Neurosci ; 16(6): 766-80, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11124896

RESUMEN

Cultured hippocampal neurons have been used to study GAP-43 phosphorylation and subcellular distribution. By immunofluorescence, GAP-43 was found associated with adherent membrane patches that remained attached to the substratum after in situ permeabilization with Nonidet-NP40. This association increases during neuronal development and is stabilized by the actin cytoskeleton. Basic fibroblast growth factor (bFGF) promotes GAP-43 translocation from the cytosol to adherent membrane patches and, at the same time, stimulates GAP-43 phosphorylation, mainly at the protein kinase C (PKC) site (Ser41). Inhibition of PKC prevented bFGF-stimulated GAP-43 phosphorylation and translocation, while activation by phorbol esters mimicked bFGF effects, suggesting that phosphorylation at Ser41 regulates GAP-43 subcellular localization. Using biochemical fractionation and phosphorylation analysis, it was found that Ser41 phosphorylation was highest in cytoskeleton-associated GAP-43 and lowest in membrane-associated GAP-43. It is proposed that GAP-43 is continuously cycling between intracellular compartments depending on its phosphorylation state and could be taking part in initial adhesive complexes assembled during growth cone advance.


Asunto(s)
Compartimento Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteína GAP-43/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Hipocampo/embriología , Serina/efectos de los fármacos , Actinas/efectos de los fármacos , Actinas/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Compartimento Celular/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas/citología , Células Cultivadas/metabolismo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Feto , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteína GAP-43/metabolismo , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA