Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-489072

RESUMEN

SARS-CoV-2 is a highly contagious respiratory virus and the causative agent for COVID-19. The severity of disease varies from mildly symptomatic to lethal and shows an extraordinary correlation with increasing age, which represents the major risk factor for severe COVID-191. However, the precise pathomechanisms leading to aggravated disease in the elderly are currently unknown. Delayed and insufficient antiviral immune responses early after infection as well as dysregulated and overshooting immunopathological processes late during disease were suggested as possible mechanisms. Here we show that the age-dependent increase of COVID-19 severity is caused by the disruption of a timely and well-coordinated innate and adaptive immune response due to impaired interferon (IFN) responses. To overcome the limitations of mechanistic studies in humans, we generated a mouse model for severe COVID-19 and compared the kinetics of the immune responses in adult and aged mice at different time points after infection. Aggravated disease in aged mice was characterized by a diminished IFN-{gamma} response and excessive virus replication. Accordingly, adult IFN-{gamma} receptor-deficient mice phenocopied the age-related disease severity and supplementation of IFN-{gamma} reversed the increased disease susceptibility of aged mice. Mimicking impaired type I IFN immunity in adult and aged mice, a second major risk factor for severe COVID-192-4, we found that therapeutic treatment with IFN-{lambda} in adult and a combinatorial treatment with IFN-{gamma} and IFN-{lambda} in aged Ifnar1-/-mice was highly efficient in protecting against severe disease. Our findings provide an explanation for the age-dependent disease severity of COVID-19 and clarify the nonredundant antiviral functions of type I, II and III IFNs during SARS-CoV-2 infection in an age-dependent manner. Based on our data, we suggest that highly vulnerable individuals combining both risk factors, advanced age and an impaired type I IFN immunity, may greatly benefit from immunotherapy combining IFN-{gamma} and IFN-{lambda}.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-455562

RESUMEN

The ongoing COVID-19 pandemic and the frequent emergence of new SARS-CoV-2 variants of concern (VOCs), requires continued development of fast and effective therapeutics. Recently, we identified high-affinity neutralizing nanobodies (Nb) specific for the receptor-binding domain (RBD) of SARS-CoV-2, which are now being used as biparatopic Nbs (bipNbs) to investigate their potential as future drug candidates. Following detailed in vitro characterization, we chose NM1267 as the most promising candidate showing high affinity binding to several recently described SARS-CoV-2 VOCs and strong neutralizing capacity against a patient isolate of B.1.351 (Beta). To assess if bipNb NM1267 confers protection against SARS-CoV-2 infection in vivo, human ACE2 transgenic mice were treated by intranasal route before infection with a lethal dose of SARS-CoV-2. NM1267-treated mice showed significantly reduced disease progression, increased survival rates and secreted less infectious virus via their nostrils. Histopathological analyses and in situ hybridization further revealed a drastically reduced viral load and inflammatory response in lungs of NM1267-treated mice. These data suggest, that bipNb NM1267 is a broadly active and easily applicable drug candidate against a variety of emerging SARS-CoV-2 VOCs.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-449871

RESUMEN

SARS-CoV-2, the causative agent of Covid-19, is known to evade the immune system by several mechanisms. This includes the shutdown of the host cellular protein synthesis, which abrogates the induction of antiviral interferon responses. The virus initiates the infection of susceptible cells by binding with its spike protein (S) to the host angiotensin-converting enzyme 2 (ACE2). Here we applied the T cell receptor fusion construct (TRuC) technology to engineer T cells against such infected cells. In our TRuCs an S-binding domain is fused to the CD3{varepsilon} component of the T cell receptor (TCR) complex, enabling recognition of S-containing cells in an HLA independent manner. This domain either consists of the S-binding part of ACE2 or a single-chain variable fragment of an anti-S antibody. We show that the TRuC T cells are activated by and kill cells that express S of SARS-CoV-2 and its alpha (B.1.1.7) and beta (B.1.351) variants at the cell surface. Treatment of SARS-CoV-2 infected cells with our engineered T cells did not lead to massive cytotoxicity towards the infected cells, but resulted in a complete rescue of the translational shutdown despite ongoing viral replication. Our data show that engineered TRuC T cell products might be used against SARS-CoV-2 by exposing infected cells to the host innate immune system.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-449893

RESUMEN

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is traditionally considered to be protective, excessive triggering of activating Fc-gamma-receptors (Fc{gamma}Rs) could be detrimental and cause immunopathology. Here, we document that patients who develop soluble circulating IgG immune complexes (sICs) during infection are subject to enhanced immunopathology driven by Fc{gamma}R activation. Utilizing cell-based reporter systems we provide evidence that sICs are predominantly formed prior to a specific humoral response against SARS-CoV-2. sIC formation, together with increased afucosylation of SARS-CoV-2 specific IgG eventually leads to an enhanced CD16 (Fc{gamma}RIII) activation of immune cells reaching activation levels comparable active systemic lupus erythematosus (SLE) disease. Our data suggest a vicious cycle of escalating immunopathology driven by an early formation of sICs in predisposed patients. These findings reconcile the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. Clinical implicationsThe identification of sICs as drivers of an escalating immunopathology in predisposed patients opens new avenues regarding intervention strategies to alleviate critical COVID-19 progression. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=78 SRC="FIGDIR/small/449893v4_ufig1.gif" ALT="Figure 1"> View larger version (17K): org.highwire.dtl.DTLVardef@b4616corg.highwire.dtl.DTLVardef@682d1aorg.highwire.dtl.DTLVardef@16946cborg.highwire.dtl.DTLVardef@a6ef7d_HPS_FORMAT_FIGEXP M_FIG C_FIG A vicious cycle of immunopathology in COVID-19 patients is driven by soluble multimeric immune complexes (sICs). SARS-CoV-2 infection triggers sIC formation in prone individuals. Activation of Fc{gamma}RIII/CD16 expressing immune cells by sICs precedes a humoral response to SARS-CoV2 infection. sICs and infection add to IgG afucosylation, further enhancing Fc{gamma}RIII/CD16 activation by opsonized targets. High inflammation induces further sIC mediated immune cell activation ultimately leading to an escalating immunopathology.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256244

RESUMEN

The recent emergence of SARS-CoV-2 variants showing increased transmissibility and immune escape is a matter of global concern. Their origin remains unclear, but intra-host virus evolution during persistent infections could be a contributing factor. Here, we studied the long-term SARS-CoV-2 infection in an immunosuppressed organ transplant recipient. Frequent respiratory specimens were tested for variant viral genomes by RT-qPCR, next-generation sequencing (NGS), and virus isolation. Late in infection, several virus variants emerged which escaped neutralization by COVID-19 convalescent and vaccine-induced antisera and had acquired genome mutations similar to those found in variants of concern first identified in UK, South Africa, and Brazil. Importantly, infection of susceptible hACE2-transgenic mice with one of the patients escape variants elicited protective immunity against re-infection with either the parental virus, the escape variant or the South African variant of concern, demonstrating broad immune control. Upon lowering immunosuppressive treatment, the patient generated spike-specific neutralizing antibodies and resolved the infection. Our results indicate that immunocompromised patients are an alarming source of potentially harmful SARS-CoV-2 variants and open up new avenues for the updating of COVID-19 vaccines.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433449

RESUMEN

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-249433

RESUMEN

CD8+ T cells are critical for the elimination and long-lasting protection of many viral infections, but their role in the current SARS-CoV-2 pandemic is unclear. Emerging data indicates that SARS-CoV-2-specific CD8+ T cells are detectable in the majority of individuals recovering from SARS-CoV-2 infection. However, optimal virus-specific epitopes, the role of pre-existing heterologous immunity as well as their kinetics and differentiation program during disease control have not been defined in detail. Here, we show that both pre-existing and newly induced SARS-CoV-2-specific CD8+ T-cell responses are potentially important determinants of immune protection in mild SARS-CoV-2 infection. In particular, our results can be summarized as follows: First, immunodominant SARS-CoV-2-specific CD8+ T-cell epitopes are targeted in the majority of individuals with convalescent SARS-CoV-2 infection. Second, MHC class I tetramer analyses revealed the emergence of phenotypically diverse and functionally competent pre-existing and newly induced SARS-CoV-2-specific memory CD8+ T cells that showed similar characteristics compared to influenza-specific CD8+ T cells. Third, SARS-CoV-2-specific CD8+ T-cell responses are more robustly detectable than antibodies against the SARS-CoV-2-spike protein. This was confirmed in a longitudinal analysis of acute-resolving infection that demonstrated rapid induction of the SARS-CoV-2-specific CD8+ T cells within a week followed by a prolonged contraction phase that outlasted the waning humoral immune response indicating that CD8+ T-cell responses might serve as a more precise correlate of antiviral immunity than antibody measurements after convalescence. Collectively, these data provide new insights into the fine specificity, heterogeneity, and dynamics of SARS-CoV-2-specific memory CD8+ T cells, potentially informing the rational development of a protective vaccine against SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA