Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 17(1): 119, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227857

RESUMEN

BACKGROUND: Clostridium autoethanogenum is an acetogenic bacterium that autotrophically converts carbon monoxide (CO) and carbon dioxide (CO2) gases into bioproducts and fuels via the Wood-Ljungdahl pathway (WLP). To facilitate overall carbon capture efficiency, the reaction stoichiometry requires supplementation of hydrogen at an increased ratio of H2:CO to maximize CO2 utilization; however, the molecular details and thus the ability to understand the mechanism of this supplementation are largely unknown. RESULTS: In order to elucidate the microbial physiology and fermentation where at least 75% of the carbon in ethanol comes from CO2, we established controlled chemostats that facilitated a novel and high (11:1) H2:CO uptake ratio. We compared and contrasted proteomic and metabolomics profiles to replicate continuous stirred tank reactors (CSTRs) at the same growth rate from a lower (5:1) H2:CO condition where ~ 50% of the carbon in ethanol is derived from CO2. Our hypothesis was that major changes would be observed in the hydrogenases and/or redox-related proteins and the WLP to compensate for the elevated hydrogen feed gas. Our analyses did reveal protein abundance differences between the two conditions largely related to reduction-oxidation (redox) pathways and cofactor biosynthesis, but the changes were more minor than we would have expected. While the Wood-Ljungdahl pathway proteins remained consistent across the conditions, other post-translational regulatory processes, such as lysine-acetylation, were observed and appeared to be more important for fine-tuning this carbon metabolism pathway. Metabolomic analyses showed that the increase in H2:CO ratio drives the organism to higher carbon dioxide utilization resulting in lower carbon storages and accumulated fatty acid metabolite levels. CONCLUSIONS: This research delves into the intricate dynamics of carbon fixation in C. autoethanogenum, examining the influence of highly elevated H2:CO ratios on metabolic processes and product outcomes. The study underscores the significance of optimizing gas feed composition for enhanced industrial efficiency, shedding light on potential mechanisms, such as post-translational modifications (PTMs), to fine-tune enzymatic activities and improve desired product yields.

2.
mSystems ; 9(9): e0091924, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39189771

RESUMEN

Elemental profiling of fungal species as a phenotyping tool is an understudied topic and is typically performed to examine plant tissue or non-biological materials. Traditional analytical techniques such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to identify elemental profiles of fungi; however, these techniques can be cumbersome due to the difficulty of preparing samples. Additionally, the instruments used for these techniques can be expensive to procure and operate. Laser-induced breakdown spectroscopy (LIBS) is an alternative elemental analytical technique-one that is sensitive across the periodic table, easy to use on various sample types, and is cost-effective in both procurement and operation. LIBS has not been used on axenic filamentous fungal isolates grown in substrate media. In this work, as a proof of concept, we used LIBS on two genetically distinct fungal species grown on a nutrient-rich and nutrient-poor substrate media to determine whether robust elemental profiles can be detected and whether differences between the fungal isolates can be identified. Our results demonstrate a distinct correlation between fungal species and their elemental profile, regardless of the substrate media, as the same strains shared a similar uptake of carbon, zinc, phosphorus, manganese, and magnesium, which could play a vital role in their survival and propagation. Independently, each fungal species exhibited a unique elemental profile. This work demonstrates a unique and valuable approach to rapidly phenotype fungi through optical spectroscopy, and this approach can be critical in understanding these fungi's behavior and interactions with the environment. IMPORTANCE: Historically, ionomics, the elemental profiling of an organism or materials, has been used to understand the elemental composition in waste materials to identify and recycle heavy metals or rare earth elements, identify the soil composition in space exploration on the moon or Mars, or understand human disorders or disease. To our knowledge, ionomic profiling of microbes, particularly fungi, has not been investigated to answer applied and fundamental biological questions. The reason is that current ionomic analytical techniques can be laborious in sample preparation, fail to measure all potential elements accurately, are cost-prohibitive, or provide inconsistent results across replications. In our previous efforts, we explored whether laser-induced breakdown spectroscopy (LIBS) could be used in determining the elemental profiles of poplar tissue, which was successful. In this proof-of-concept endeavor, we undertook a transdisciplinary effort between applied and fundamental mycology and elemental analytical techniques to address the biological question of how LIBS can used for fungi grown axenically in a nutrient-rich and nutrient-poor environment.


Asunto(s)
Hongos , Rayos Láser , Análisis Espectral , Análisis Espectral/métodos , Análisis Espectral/instrumentación , Hongos/aislamiento & purificación , Hongos/química , Hongos/clasificación , Hongos/metabolismo , Espectrometría de Masas/métodos
3.
Front Plant Sci ; 14: 1210146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546246

RESUMEN

Metabolite genome-wide association studies (mGWASs) are increasingly used to discover the genetic basis of target phenotypes in plants such as Populus trichocarpa, a biofuel feedstock and model woody plant species. Despite their growing importance in plant genetics and metabolomics, few mGWASs are experimentally validated. Here, we present a functional genomics workflow for validating mGWAS-predicted enzyme-substrate relationships. We focus on uridine diphosphate-glycosyltransferases (UGTs), a large family of enzymes that catalyze sugar transfer to a variety of plant secondary metabolites involved in defense, signaling, and lignification. Glycosylation influences physiological roles, localization within cells and tissues, and metabolic fates of these metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a challenge for large-scale characterization. Using a high-throughput assay, we produced substrate acceptance profiles for 40 previously uncharacterized candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a focused metabolite screen demonstrated varying levels of substrate specificity among UGTs. A substrate binding model case study of UGT-23 rationalized observed enzyme activities and mGWAS associations, including glycosylation of trichocarpinene to produce trichocarpin, a major higher-order salicylate in P. trichocarpa. We identified UGTs putatively involved in lignan, flavonoid, salicylate, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that determine sustainable biomass crop production. Our results provide new support for in silico analyses and evidence-based guidance for in vivo functional characterization.

4.
Biotechnol Biofuels Bioprod ; 16(1): 41, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899393

RESUMEN

BACKGROUND: High-throughput metabolomics analytical methodology is needed for population-scale studies of bioenergy-relevant feedstocks such as poplar (Populus sp.). Here, the authors report the relative abundance of extractable aromatic metabolites in Populus trichocarpa leaves rapidly estimated using pyrolysis-molecular beam mass spectrometry (py-MBMS). Poplar leaves were analyzed in conjunction with and validated by GC/MS analysis of extracts to determine key spectral features used to build PLS models to predict the relative composition of extractable aromatic metabolites in whole poplar leaves. RESULTS: The Pearson correlation coefficient for the relative abundance of extractable aromatic metabolites based on ranking between GC/MS analysis and py-MBMS analysis of the Boardman leaf set was 0.86 with R2 = 0.76 using a simplified prediction approach from select ions in MBMS spectra. Metabolites most influential to py-MBMS spectral features in the Clatskanie set included the following compounds: catechol, salicortin, salicyloyl-coumaroyl-glucoside conjugates, α-salicyloylsalicin, tremulacin, as well as other salicylates, trichocarpin, salicylic acid, and various tremuloidin conjugates. Ions in py-MBMS spectra with the highest correlation to the abundance of extractable aromatic metabolites as determined by GC/MS analysis of extracts, included m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122, and were used to develop the simplified prediction approach without PLS models or a priori measurements. CONCLUSIONS: The simplified py-MBMS method is capable of rapidly screening leaf tissue for relative abundance of extractable aromatic secondary metabolites to enable prioritization of samples in large populations requiring comprehensive metabolomics that will ultimately inform plant systems biology models and advance the development of optimized biomass feedstocks for renewable fuels and chemicals.

5.
Front Plant Sci ; 10: 1249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649710

RESUMEN

Understanding the regulatory network controlling cell wall biosynthesis is of great interest in Populus trichocarpa, both because of its status as a model woody perennial and its importance for lignocellulosic products. We searched for genes with putatively unknown roles in regulating cell wall biosynthesis using an extended network-based Lines of Evidence (LOE) pipeline to combine multiple omics data sets in P. trichocarpa, including gene coexpression, gene comethylation, population level pairwise SNP correlations, and two distinct SNP-metabolite Genome Wide Association Study (GWAS) layers. By incorporating validation, ranking, and filtering approaches we produced a list of nine high priority gene candidates for involvement in the regulation of cell wall biosynthesis. We subsequently performed a detailed investigation of candidate gene GROWTH-REGULATING FACTOR 9 (PtGRF9). To investigate the role of PtGRF9 in regulating cell wall biosynthesis, we assessed the genome-wide connections of PtGRF9 and a paralog across data layers with functional enrichment analyses, predictive transcription factor binding site analysis, and an independent comparison to eQTN data. Our findings indicate that PtGRF9 likely affects the cell wall by directly repressing genes involved in cell wall biosynthesis, such as PtCCoAOMT and PtMYB.41, and indirectly by regulating homeobox genes. Furthermore, evidence suggests that PtGRF9 paralogs may act as transcriptional co-regulators that direct the global energy usage of the plant. Using our extended pipeline, we show multiple lines of evidence implicating the involvement of these genes in cell wall regulatory functions and demonstrate the value of this method for prioritizing candidate genes for experimental validation.

6.
Plant Physiol ; 181(1): 63-84, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289215

RESUMEN

Lignin provides essential mechanical support for plant cell walls but decreases the digestibility of forage crops and increases the recalcitrance of biofuel crops. Attempts to modify lignin content and/or composition by genetic modification often result in negative growth effects. Although several studies have attempted to address the basis for such effects in individual transgenic lines, no common mechanism linking lignin modification with perturbations in plant growth and development has yet been identified. To address whether a common mechanism exists, we have analyzed transposon insertion mutants resulting in independent loss of function of five enzymes of the monolignol pathway, as well as one double mutant, in the model legume Medicago truncatula These plants exhibit growth phenotypes from essentially wild type to severely retarded. Extensive phenotypic, transcriptomic, and metabolomics analyses, including structural characterization of differentially expressed compounds, revealed diverse phenotypic consequences of lignin pathway perturbation that were perceived early in plant development but were not predicted by lignin content or composition alone. Notable phenotypes among the mutants with severe growth impairment were increased trichome numbers, accumulation of a variety of triterpene saponins, and extensive but differential ectopic expression of defense response genes. No currently proposed model explains the observed phenotypes across all lines. We propose that reallocation of resources into defense pathways is linked to the severity of the final growth phenotype in monolignol pathway mutants of M. truncatula, although it remains unclear whether this is a cause or an effect of the growth impairment.


Asunto(s)
Lignina/metabolismo , Medicago truncatula/fisiología , Biocombustibles , Transporte Biológico , Pared Celular/química , Pared Celular/metabolismo , Productos Agrícolas , Expresión Génica Ectópica , Perfilación de la Expresión Génica , Lignina/química , Medicago truncatula/química , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Metabolómica , Mutación , Fenotipo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología
7.
Ann Bot ; 124(4): 617-626, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30689716

RESUMEN

BACKGROUND AND AIMS: The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response. METHODS: A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d. KEY RESULTS: The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin). CONCLUSIONS: The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.


Asunto(s)
Sequías , Populus , Deshidratación , Humanos , Hojas de la Planta , Agua
8.
Biotechnol Biofuels ; 10: 14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28077967

RESUMEN

BACKGROUND: Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Although much of the work-to-date has centered on characterizing this microbe's growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand its metabolism on more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. RESULTS: The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum's cellular membrane as the culture progresses. This is undoubtedly a response to the gradual accumulation of lignocellulose-derived inhibitory compounds as the organism deconstructs the switchgrass to access the embedded cellulose. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in various enzymes, including those involved in the interconversion of branched amino acids valine, leucine, and isoleucine to iso- and anteiso-fatty acid precursors. Additionally, the metabolic accumulation of hemicellulose-derived sugars and sugar alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism/pentose phosphate pathway indicates that C. thermocellum shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux in response to C5 sugar metabolites that increase during lignocellulose deconstruction. CONCLUSIONS: Integrated omic platforms provided complementary systems biological information that highlight C. thermocellum's specific response to cytotoxic inhibitors released during the deconstruction and utilization of switchgrass. These additional viewpoints allowed us to fully realize the level to which the organism adapts to an increasingly challenging culture environment-information that will prove critical to C. thermocellum's industrial efficacy.

9.
Phytochemistry ; 112: 170-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25107662

RESUMEN

Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Factores de Transcripción/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignanos/biosíntesis , Lignina/biosíntesis
10.
Mol Plant Microbe Interact ; 27(6): 546-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24548064

RESUMEN

Within boreal and temperate forest ecosystems, the majority of trees and shrubs form beneficial relationships with mutualistic ectomycorrhizal (ECM) fungi that support plant health through increased access to nutrients as well as aiding in stress and pest tolerance. The intimate interaction between fungal hyphae and plant roots results in a new symbiotic "organ" called the ECM root tip. Little is understood concerning the metabolic reprogramming that favors the formation of this hybrid tissue in compatible interactions and what prevents the formation of ECM root tips in incompatible interactions. We show here that the metabolic changes during favorable colonization between the ECM fungus Laccaria bicolor and its compatible host, Populus trichocarpa, are characterized by shifts in aromatic acid, organic acid, and fatty acid metabolism. We demonstrate that this extensive metabolic reprogramming is repressed in incompatible interactions and that more defensive compounds are produced or retained. We also demonstrate that L. bicolor can metabolize a number of secreted defensive compounds and that the degradation of some of these compounds produces immune response metabolites (e.g., salicylic acid from salicin). Therefore, our results suggest that the metabolic responsiveness of plant roots to L. bicolor is a determinant factor in fungus-host interactions.


Asunto(s)
Laccaria/fisiología , Metabolómica , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Populus/metabolismo , Benzoatos/metabolismo , Evolución Biológica , Ácidos Carboxílicos/metabolismo , Ácidos Grasos/metabolismo , Hifa , Redes y Vías Metabólicas , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Populus/genética , Populus/microbiología , Simbiosis
11.
Biotechnol Biofuels ; 5(1): 81, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23146305

RESUMEN

BACKGROUND: The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks. RESULTS: Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to milder pretreatment conditions with yeast-based simultaneous saccharification and fermentation and a consolidated bioprocessing approach using Clostridium thermocellum, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass, which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor sp. strains, which could not be rectified by additional processing conditions. Gas chromatography-mass spectrometry (GC-MS) metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived-lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor sp. strains. CONCLUSIONS: The down-regulation of the COMT gene improves the bioconversion of switchgrass relative to the wild-type regardless of the pretreatment condition or fermentation microorganism. However, bacterial fermentations demonstrated strain-dependent sensitivity to the COMT transgenic biomass, likely due to additional soluble lignin pathway-derived constituents resulting from the COMT gene disruption. Removal of these inhibitory constituents permitted completion of fermentation by C. thermocellum, but not by the Caldicellulosiruptor sp. strains. The reason for this difference in performance is currently unknown.

12.
Biotechnol Biofuels ; 5(1): 71, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22998926

RESUMEN

BACKGROUND: Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. RESULTS: GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. CONCLUSIONS: Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl alcohol, and related precursors and products; the accumulation of which suggests altered metabolism of 5-hydroxyconiferyl alcohol in switchgrass. Given that there was no indication that iso-sinapyl alcohol was integrated in cell walls, it is considered a monolignol analog. Diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are together associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth. However, iso-sinapyl alcohol and iso-sinapic acid, added separately to media, were not inhibitory to C. thermocellum cultures.

13.
Mol Plant Microbe Interact ; 25(6): 765-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22375709

RESUMEN

Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.


Asunto(s)
Arabidopsis/clasificación , Arabidopsis/microbiología , Fotosíntesis/fisiología , Enfermedades de las Plantas/inmunología , Pseudomonas fluorescens/fisiología , Arabidopsis/metabolismo , Señalización del Calcio , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Interacciones Huésped-Patógeno , Filogenia , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Pseudomonas fluorescens/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo
14.
Appl Opt ; 47(31): G158-65, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19122698

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) is being proposed more and more as a high-throughput technology to assess the elemental composition of materials. When a specific element is of interest, semiquantification is possible by building a calibration model using the emission line intensity of this element for known samples. However, a unique element has usually more than one emission line, and there are many examples where several emission lines used in combination give dramatically better results than any of the individual variables used alone. With a multivariate approach, models can be constructed that take into account all the emission lines related to a specific element; therefore more robust models can be developed. In this work, chemometric methods such as principal component analysis and partial least squares are proposed to resolve and extract useful information from the LIBS spectral data collected on biological materials.

15.
Appl Opt ; 42(12): 2072-7, 2003 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-12716147

RESUMEN

Soils from various sites have been analysed with the laser-induced breakdown spectroscopy (LIBS) technique for total elemental determination of carbon and nitrogen. Results from LIBS have been correlated to a standard laboratory-based technique (sample combustion), and strong linear correlations were obtained for determination of carbon concentrations. The LIBES technique was used on soils before and after acid washing, and the technique appears to be useful for the determination of both organic and inorganic soil carbon. The LIBS technique has the potential to be packaged into a field-deployable instrument.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA