Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 39(42): 12804-18, 2000 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-11041845

RESUMEN

Residues of opposite charge often populate heptad positions g (heptad i on chain 1) and e' (heptad i + 1 on chain 2) in dimeric coiled coils and may stabilize the dimer by formation of interchain ion pairs. To investigate the contribution to stability of such electrostatic interactions we have designed a disulfide-linked heterodimeric zipper (AB zipper) consisting of the acidic chain Ac-E-VAQLEKE-VAQAEAE-NYQLEQE-VAQLEHE-CG-NH(2) and the basic chain Ac-E-VQALKKR-VQALKAR-NYAAKQK-VQALRHK-CG-NH(2) in which all e and g positions are occupied by either E or K/R to form a maximum of seven interhelical salt bridges. Temperature-induced denaturation experiments monitored by circular dichroism reveal a stable coiled coil conformation below 50 degrees C and in the pH range 1.2-8.0. Stability is highest at pH approximately 4.0 [DeltaG(U) (37 degrees C) = 5.18 +/- 0.51 kcal mol(-)(1)]. The solution structure of the AB zipper at pH 5.65 has been elucidated on the basis of homonuclear (1)H NMR data collected at 800 MHz [heavy atom rmsd's for the ensemble of 50 calculated structures are 0.47 +/- 0.13 A (backbone) and 0.95 +/- 0.16 A (all)]. Both chains of the AB zipper are almost entirely in alpha-helical conformation and form a superhelix with a left-handed twist. Overhauser connectivities reveal close contacts between g position residues (heptad i on chain 1) and residues d/f (heptad i on chain 1), residues a/d (heptad i + 1 on chain 1), and residue a' (heptad i + 1 on chain 2). Residues in position e (heptad i on chain 1) are in contact with residues a/b/d/f (heptad i on chain 1) and residue d' (heptad i on chain 2). These connectivities hint at a relatively defined alignment of the side chains across the helix interface. Partial H-bond formation between the functional groups of residues g and e'(+1) is observed in the calculated structures. NMR pH titration experiments disclose pK(a) values for Glu delta-carboxylate groups: 4.14 +/- 0.02 (E(1)), 4.82 +/- 0.07 (E(6)), 4.52 +/- 0.01 (E(8)), 4.37 +/- 0.03 (E(13)), 4.11 +/- 0.02 (E(15)), 4.41 +/- 0.07 (E(20)), 4.82 +/- 0.03 (E(22)), 4.65 +/- 0.04 (E(27)), 4.63 +/- 0.03 (E(29)), 4.22 +/- 0.02 (E(1)(')). By comparison with pK(a) of Glu in unfolded peptides ( approximately 4. 3 +/- 0.1), our pK(a) data suggest marginal or even unfavorable contribution of charged Glu to the stability of the AB zipper. The electrostatic energy gained from interhelical ion pairs is likely to be surpassed by hydrophobic energy terms upon protonation of Glu, due to increased hydrophobicity of uncharged Glu and, thus, better packing against apolar residues at the chain interface.


Asunto(s)
Ácido Glutámico/química , Leucina Zippers , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Ácidos Carboxílicos/química , Dicroismo Circular , Cristalografía por Rayos X , Dimerización , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/síntesis química , Pliegue de Proteína , Estructura Secundaria de Proteína , Alineación de Secuencia , Soluciones , Solventes , Electricidad Estática , Termodinámica
2.
Biochemistry ; 38(48): 15741-55, 1999 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-10625440

RESUMEN

The kringle 2 (K2) module of human plasminogen (Pgn) binds L-lysine and analogous zwitterionic compounds, such as the antifibronolytic agent trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA). Far-UV CD and NMR spectra reveal little conformational change in K2 upon ligand binding. However, retarded (1)H-(2)H isotope exchange kinetics induced by AMCHA indicate stabilization of the K2 conformation by the ligand. Assessment of secondary structure content from CD spectra yields approximately 26% beta-STRAND, approximately 13% beta-TURN, approximately 15% 3(1)-HELIX, and approximately 6% 3(10)-HELIX. The NMR solution conformation of the K2 domain complexed to AMCHA has been determined [heavy atom rmsd = 0.49 +/- 0.09A (BACKBONE) AND 1.02+/- 0.08 (ALL)]. The K2 molecule has overall dimensions of approximately 34.5A times approximately 33.4A times approximately 22.7A . Analogous with the polypeptide outline of homologous domains, K2 contains three short antiparallel beta-sheets (paired strands 15-16/20-21, 24-25/48-49, and 62-64/72-74) and four defined beta-turns (residues 6-9, 16-19, 53-56, AND 67-70). Consistent with the CD analysis, albeit novel in the context of kringle folding, the NMR structure reveals an unpaired beta-strand structured by residues 30-32, a turn of 3(10)-helix compromising residues 38-41, and a 3(1)-helix for residues 21-24 and 74-79. We also identify alignable 3(1)-helices in previously reported homologous kringle structures. Rather high order parameter S(2) values (= approximately 0.85 +/- 0.04) characterize the K2 backbone dynamics. The lowest flexibility is observed for the two inner loop segments of residues 51-63 AND 63-75 (= approximately 0.86-0.87 +/- 0.03). Overhauser connectivities reveal close hydrophobic contacts of the ligand ring with side chains of Tyr(36), Trp(62), Phe(64), Trp(72), AND Leu(74). In most K2 structures, the N atom of AMCHA places itself approximately 3.9 and 4.4A from the anionic groups of Glu(57) and Asp(55), respectively, while its carboxylate group, H-bonded to the Tyr(36) side chain OH(eta), ion-pairs the Arg(71) guanidinium group. Consistent with the preference of K2 for binding 5-aminopentanoic acid over 6-aminohexanoic acid, the positions of the ionic centers within the K2 binding site approach each other approximately 1A closer relative to what is observed in lysine binding sites of homologous Pgn modules.


Asunto(s)
Antifibrinolíticos/química , Kringles , Plasminógeno/química , Ácido Tranexámico/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , Enlace de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Soluciones , Relación Estructura-Actividad , Termodinámica
3.
FASEB J ; 12(15): 1731-8, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9837863

RESUMEN

Angiogenesis is a complex process that involves endothelial cell proliferation, migration, basement membrane degradation, and neovessel organization. Angiostatin, consisting of four homologous triple-disulfide bridged kringle domains, has previously been shown to exhibit profound inhibition of endothelial cell proliferation in vitro and angiogenesis in vivo. It was also demonstrated that angiostatin could suppress the growth of a variety of tumors via the blocking of angiogenesis. The primary aim of our study was to characterize the kringle domains of angiostatin for their inhibitory activities of endothelial cell migration in order to elucidate their contributions to the anti-angiogenic function of angiostatin. In this report, we demonstrate for the first time that the kringles of angiostatin play different roles in inhibiting endothelial cell migration, a crucial process in angiogenesis. Kringle 4, which has only marginal anti-proliferative activity, is among the most potent fragments in inhibiting endothelial cell migration (IC50 of approximately 500 nM). In contrast, kringle 1-3, which is equivalent to angiostatin in inhibiting endothelial cell proliferation, manifests only a modest anti-migratory effect. The combination of kringle 1-3 and kringle 4 results in an anti-migratory activity comparable to that of angiostatin. When kringle 1 is removed from kringle 1-3, the resulting kringle 2-3 becomes more potent than kringle 1-3. This implies that kringle 1, although virtually ineffective in inhibiting endothelial cell migration, may influence the conformation of kringle 1-3 to alter its anti-migratory activity. We also show that disruption of the kringle structure by reducing/alkylating agents markedly attenuates the anti-migratory activity of angiostatin, demonstrating the significance of kringle conformation in maintaining the anti-angiogenic activity of angiostatin. Our data suggest that different kringle domains may contribute to the overall anti-angiogenic function of angiostatin by their distinct anti-migratory activities.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Kringles , Neovascularización Fisiológica , Fragmentos de Péptidos/farmacología , Plasminógeno/farmacología , Glándulas Suprarrenales/irrigación sanguínea , Angiostatinas , Animales , Capilares/citología , Bovinos , Relación Dosis-Respuesta a Droga , Humanos , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad
4.
Protein Sci ; 7(9): 1960-9, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9761476

RESUMEN

Interactions between the kringle 4 (K4) domain of human plasminogen (Pgn) and segments of the N-terminal Glu1-Lys77 peptide (NTP) have been investigated via 1H-NMR at 500 MHz. NTP peptide stretches devoid of Lys residues but carrying an internal Arg residue show negligible affinity toward K4 (equilibrium association constant Ka < 0.05 mM(-1)). In contrast, while most fragments containing an internal Lys residue exhibit affinities comparable to that shown by the blocked Lys derivative Nalpha-acetyl-L-lysine-methyl ester (Ka approximately 0.2 mM(-1), peptides encompassing Lys50O consistently show higher Ka values. Among the investigated linear peptides, Nalpha-acetyl-Ala-Phe-Tyr-His-Ser-Ser-Lys5O-Glu-Gln-NH2 (AcAFYHSK5OEQ-NH2) exhibits the strongest interaction with K4 (Ka approximately 1.4 mM(-1)), followed by AcYHSK50EQ-NH2 (Ka approximately 0.9 mM(-1)). Relative to the wild-type sequence, mutated hexapeptides exhibit lesser affinity for K4. When a Lys50 --> Ser mutation was introduced (==> AcYHSS50EQ-NH2), binding was abolished. The Ile27-lle56 construct (L-NTP) contains the Lys50 site within a loop constrained by two cystine bridges. The propensity of recombinant Pgn K1 (rK1) and K2 (rK2) modules, and of Pgn fragments encompassing the intact K4 and K5 domains, for binding L-NTP, was investigated. We find that L-NTP interacts with rK1, rK2, K4, and K5-all lysine-binding kringles-in a fashion that closely mimics what has been observed for the Glul-HSer57 N-terminal fragment of Pgn (CB-NTP). Thus, both the constellation of kringle lysine binding site (LBS) aromatic residues that are perturbed upon complexation of L-NTP and magnitudes of kringle-L-NTP binding affinities (rK1, Ka approximately 4.3 mM(-1); rK2, Ka approximately 3.7 mM(-1; K4, Ka approximately 6.4 mM(1); and K5, Ka approximately 2.1 mM(-1)) are essentially the same as for the corresponding kringle-CB-NTP pairs. Molecular modeling studies suggest that the Glu39-Lys50 stretch in NTP generates an area that complements, both topologically and electrostatically, the solvent-exposed kringle LBS surface.


Asunto(s)
Kringles/fisiología , Lisina/metabolismo , Fragmentos de Péptidos/química , Plasminógeno/química , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Simulación por Computador , Bromuro de Cianógeno/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/fisiología , Conformación Proteica , Homología de Secuencia de Aminoácido
5.
Protein Sci ; 7(9): 1947-59, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9761475

RESUMEN

The Glu1-Val79 N-terminal peptide (NTP) domain of human plasminogen (Pgn) is followed by a tandem array of five kringle (K) structures of approximately 9 kDa each. K1, K2, K4, and K5 contain each a lysine-binding site (LBS). Pgn was cleaved with CNBr and the Glul-HSer57 N-terminal fragment (CB-NTP) isolated. In addition, the Ile27-Ile56 peptide (L-NTP) that spans the doubly S-S bridged loop segment of NTP was synthesized. Pgn kringles were generated either by proteolytic fragmentation of Pgn (K4, K5) or via recombinant gene expression (rK1, rK2, and rK3). Interactions of CB-NTP with each of the Pgn kringles were monitored by 1H-NMR at 500 MHz and values for the equilibrium association constants (Ka) determined: rK1, Ka approximately 4.6 mM(-1); rK2, Ka approximately 3.3 mM(-1); K4, Ka approximately 6.2 mM-'; K5, K, 2.3 mM(-1). Thus, the lysine-binding kringles interact with CB-NTP more strongly than with Nalpha-acetyl-L-lysine methyl ester (Ka < 0.6 mM(-l), which reveals specificity for the NTP. In contrast, CB-NTP does not measurably interact with rK3. which is devoid of a LBS. CB-NTP and L-NTP 1H-NMR spectra were assigned and interproton distances estimated from 1H-1H Overhauser (NOESY) experiments. Structures of L-NTP and the Glul-Ile27 segment of CB-NTP were computed via restrained dynamic simulated annealing/energy minimization (SA/EM) protocols. Conformational models of CB-NTP were generated by joining the two (sub)structures followed by a round of constrained SA/EM. Helical turns are indicated for segments 6-9, 12-16, 28-30, and 45-48. Within the Cys34-Cys42 loop of L-NTP, the structure of the Glu-Glu-Asp-Glu-Glu39 segment appears to be relatively less defined, as is the case for the stretch containing Lys5O within the Cys42-Cys54 segment, consistent with the latter possibly interacting with kringle domains in intact Glul-Pgn. Overall, the CB-NTP and L-NTP fragments are of low regular secondary structure content-as indicated by UV-CD spectra- and exhibit fast amide 1H-2H exchange in 2H2O, suggestive of high flexibility.


Asunto(s)
Kringles/fisiología , Conformación Molecular , Fragmentos de Péptidos/química , Plasminógeno/química , Secuencia de Aminoácidos , Bromuro de Cianógeno/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/fisiología , Estructura Secundaria de Proteína
6.
Biochemistry ; 36(39): 11591-604, 1997 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-9305949

RESUMEN

The interaction of various small aliphatic and aromatic ionic ligands with the human plasminogen (HPg) recombinant kringle 2 (r-K2) domain has been investigated by 1H-NMR spectroscopy at 500 MHz. The results are compared against ligand-binding properties of the homologous, lysine-binding HPg kringle 1 (K1), kringle 4 (K4), and kringle 5 (K5). The investigated ligands include the omega-aminocarboxylic acids 4-aminobutyric acid (4-ABA), 5-aminopentanoic acid (5-APA), 6-aminohexanoic acid (6-AHA), 7-aminoheptanoic acid (7-AHA), lysine and arginine derivatives with free and blocked alpha-amino and/or carboxylate groups, and a number of cyclic analogs, zwitterions of similar size such as trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA), and the nonzwitterions benzylamine and benzamidine. Equilibrium association constant (Ka) values were determined from 1H-NMR ligand titration profiles. Among the aliphatic linear ligands, 5-APA (Ka approximately 3.4 mM-1) shows the strongest interaction with r-K2 followed by 6-AHA (Ka approximately 2.3 mM-1), 7-AHA (Ka approximately 0.45 mM-1), and 4-ABA (Ka approximately 0.22 mM-1). In contrast, r-K1, K4, and K5 exhibit a preference for 6-AHA (Ka approximately 74.2, 21.0, and 10.6 mM-1, respectively), a ligand approximately 1.14 A longer than 5-APA. Mutations R220G and E221D increase the affinity of r-K2 for these ligands but leave the selectivity profile essentially unaffected: 5-APA > 6-AHA > 7-AHA > 4-ABA (Ka approximately 6.5, 3.9, 1.8, and 0.74 mM-1, respectively). We find that, while r-K2 definitely interacts with Nalpha-acetyl-L-lysine and L-lysine (Ka approximately 0.96 and 0.68 mM-1, respectively), the affinity for analogs carrying a blocked carboxylate group is relatively weak (Ka approximately 0.1 mM-1). We also investigated the interaction of r-K2 with L-arginine (Ka approximately 0.31 mM-1) and its derivatives Nalpha-acetyl-L-arginine (Ka approximately 0.55 mM-1), Nalpha-acetyl-L-arginine methyl ester (Ka approximately 0.07 mM-1), and L-arginine methyl ester (Ka approximately 0.03 mM-1). Zwitterionic gamma-guanidinobutyric acid, containing one less methylene group than arginine, exhibits a Ka of approximately 0.28 mM-1. The affinity of r-K2 for lysine and arginine derivatives suggests that K2 could play a role in intermolecular as well as intramolecular interactions of HPg. As is the case for the HPg K1, K4, and K5, among the tested ligands, AMCHA is the one which interacts most firmly with r-K2 (Ka approximately 7.3 mM-1) while the aromatic ligands BASA, benzylamine, and benzamidine exhibit Ka values of approximately 4.0, approximately 0.04, and approximately 0.03 mM-1, respectively. The relative stability of these interactions indicates a strict requirement for both cationic and anionic polar groups in the ligand, whereas the presence of a lipophilic aromatic group seems to be of lesser consequence. Ligand-induced shifts of r-K2 (1)H-NMR signals and two-dimensional nuclear Overhauser effect (NOESY) experiments in the presence of 6-AHA reveal direct involvement of residues Tyr36, Trp62, Phe64, and Trp72 (kringle residue numbering convention) in ligand binding. Starting from the X-ray crystallographic structure of HPg K4 and the intermolecular 1H-NMR NOE data, two models of the K2 lysine binding site complexed to 6-AHA have been derived which differ mainly in the extent of electrostatic pairing between the K2 Arg56 and Glu57 side chains. Competition between these two conformations in equilibrium may account for the relatively lesser affinity of the K2 domain for zwitterionic lysine-type ligands.


Asunto(s)
Kringles , Plasminógeno/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Plasminógeno/química , Unión Proteica , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA