RESUMEN
Antibiotic resistance in foodborne pathogens is an increasing threat to global human health. Among the most prevalent antibiotic-resistant bacteria are Salmonella enterica serovar Typhimurium, Campylobacter jejuni and E. coli 0157:H7. Control of these and other pathogens requires innovative approaches, i.e., discovering new molecules that will inactivate them, or render them less virulent without inducing resistance. Recently, several polyphenol molecules have been shown to possess such characteristics. Also, the use of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) approaches has recently been proposed for such purpose. This review summarizes the main findings regarding the application of both approaches to control the above-mentioned foodborne pathogens by relying on Quorum Sensing interference (Quorum Quenching) mechanisms and highlights the avenues needed for further research.
RESUMEN
The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.
RESUMEN
This study shows the seasonal effect on the antioxidant, antiproliferative, and antimicrobial activities of L. glaucescens Kunth (LG) leaves extracts. Their antioxidant activity was evaluated through the DPPH, FRAP, and ORAC assays. Their phenolic content (PC) was determined by means of the Folin-Ciocalteu method, and the main phenolic compounds were identified through a HPLC-DAD analysis. Antiproliferative activity was determined by MTT assay against HeLa, LS 180, M12.C3.F6, and ARPE cell lines. Antimicrobial potential was evaluated against Staphylococcus aureus and Escherichia coli using a microdilution method. All the LG extracts presented high antioxidant activity and PC, with quercitrin and epicatechin being the most abundant. Antioxidant activity and PC were affected by the season; particularly autumn (ALGE) and summer (SULGE) extracts exhibited the highest values (p < 0.05). All extracts presented moderate antiproliferative activity against the cell lines evaluated, HeLa being the most susceptible of them. However, ALGE and SULGE were the most active too. About antimicrobial activity, SULGE (MIC90 < 800 µg/mL; MIC50 < 400 µg/mL), and SLGE (MIC50 < 1000 µg/mL) showed a moderate inhibitory effect against S. aureus. These findings provide new information about the seasonal effect on the PC and biological properties of LG extracts. Clearly, antioxidant activity was the most important with respect to the other two.