Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 963170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909723

RESUMEN

Rice is one of the most important food crops for human beings. Its total production ranks third in the grain crop output. Bacterial Leaf Blight (BLB), as one of the three major diseases of rice, occurs every year, posing a huge threat to rice production and safety. There is an asymptomatic period between the infection and the onset periods, and BLB will spread rapidly and widely under suitable conditions. Therefore, accurate detection of early asymptomatic BLB is very necessary. The purpose of this study was to test the feasibility of detecting early asymptomatic infection of the rice BLB disease based on hyperspectral imaging and Spectral Dilated Convolution 3-Dimensional Convolutional Neural Network (SDC-3DCNN). First, hyperspectral images were obtained from rice leaves infected with the BLB disease at the tillering stage. The spectrum was smoothed by the Savitzky-Golay (SG) method, and the wavelength between 450 and 950 nm was intercepted for analysis. Then Principal Component Analysis (PCA) and Random Forest (RF) were used to extract the feature information from the original spectra as inputs. The overall performance of the SDC-3DCNN model with different numbers of input features and different spectral dilated ratios was evaluated. Lastly, the saliency map visualization was used to explain the sensitivity of individual wavelengths. The results showed that the performance of the SDC-3DCNN model reached an accuracy of 95.4427% when the number of inputs is 50 characteristic wavelengths (extracted by RF) and the dilated ratio is set at 5. The saliency-sensitive wavelengths were identified in the range from 530 to 570 nm, which overlaps with the important wavelengths extracted by RF. According to our findings, combining hyperspectral imaging and deep learning can be a reliable approach for identifying early asymptomatic infection of the rice BLB disease, providing sufficient support for early warning and rice disease prevention.

2.
Sensors (Basel) ; 19(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766763

RESUMEN

As an artificial intelligence technique, case-based reasoning has considerable potential to build intelligent systems for smart agriculture, providing farmers with advice about farming operation management. A proper case representation method plays a crucial role in case-based reasoning systems. Some methods like textual, attribute-value pair, and ontological representations have been well explored by researchers. However, these methods may lead to inefficient case retrieval when a large volume of data is stored in the case base. Thus, an associated representation method is proposed in this paper for fast case retrieval. Each case is interconnected with several similar and dissimilar ones. Once a new case is reported, its features are compared with historical data by similarity measurements for identifying a relative similar past case. The similarity of associated cases is measured preferentially, instead of comparing all the cases in the case base. Experiments on case retrieval were performed between the associated case representation and traditional methods, following two criteria: the number of visited cases and retrieval accuracy. The result demonstrates that our proposal enables fast case retrieval with promising accuracy by visiting fewer past cases. In conclusion, the associated case representation method outperforms traditional methods in the aspect of retrieval efficiency.

3.
Sensors (Basel) ; 18(10)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332798

RESUMEN

Web Ontology Language (OWL) is designed to represent varied knowledge about things and the relationships of things. It is widely used to express complex models and address information heterogeneity of specific domains, such as underwater environments and robots. With the help of OWL, heterogeneous underwater robots are able to cooperate with each other by exchanging information with the same meaning and robot operators can organize the coordination easier. However, OWL has expressivity limitations on representing general rules, especially the statement "If … Then … Else …". Fortunately, the Semantic Web Rule Language (SWRL) has strong rule representation capabilities. In this paper, we propose a rule-based reasoner for inferring and providing query services based on OWL and SWRL. SWRL rules are directly inserted into the ontologies by several steps of model transformations instead of using a specific editor. In the verification experiments, the SWRL rules were successfully and efficiently inserted into the OWL-based ontologies, obtaining completely correct query results. This rule-based reasoner is a promising approach to increase the inference capability of ontology-based models and it achieves significant contributions when semantic queries are done.

4.
Sensors (Basel) ; 18(6)2018 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-29865251

RESUMEN

As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.

5.
Sensors (Basel) ; 17(5)2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28531135

RESUMEN

In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF) are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

6.
Sensors (Basel) ; 16(5)2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-27187397

RESUMEN

The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA