Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 10(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34685591

RESUMEN

Sexual selection arising from sperm competition has driven the evolution of immense variation in ejaculate allocation and sperm characteristics not only among species, but also among males within a species. One question that has received little attention is how cooperation among males affects these patterns. Here we ask how male alternative reproductive types differ in testes size, ejaculate production, and sperm morphology in the ocellated wrasse, a marine fish in which unrelated males cooperate and compete during reproduction. Nesting males build nests, court females and provide care. Sneaker males only "sneak" spawn, while satellite males sneak, but also help by chasing away sneakers. We found that satellite males have larger absolute testes than either sneakers or nesting males, despite their cooperative role. Nesting males invested relatively less in testes than either sneakers or satellites. Though sneakers produced smaller ejaculates than either satellite or nesting males, we found no difference among male types in either sperm cell concentration or sperm number, implying sneakers may produce less seminal fluid. Sperm tail length did not differ significantly among male types, but sneaker sperm cells had significantly larger heads than either satellite or nesting male sperm, consistent with past research showing sneakers produce slower sperm. Our results highlight that social interactions among males can influence sperm and ejaculate production.


Asunto(s)
Peces/metabolismo , Reproducción , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Masculino
2.
R Soc Open Sci ; 4(5): 170350, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28573041

RESUMEN

Social living has evolved numerous times across a diverse array of animal taxa. An open question is how the transition to a social lifestyle has shaped, and been shaped by, the underlying neurohormonal machinery of social behaviour. The nonapeptide neurohormones, implicated in the regulation of social behaviours, are prime candidates for the neuroendocrine substrates of social evolution. Here, we examined the brains of eight cichlid fish species with divergent social systems, comparing the number and size of preoptic neurons that express the nonapeptides isotocin and vasotocin. While controlling for the influence of phylogeny and body size, we found that the highly social cooperatively breeding species (n = 4) had fewer parvocellular isotocin neurons than the less social independently breeding species (n = 4), suggesting that the evolutionary transition to group living and cooperative breeding was associated with a reduction in the number of these neurons. In a complementary analysis, we found that the size and number of isotocin neurons significantly differentiated the cooperatively breeding from the independently breeding species. Our results suggest that isotocin is related to sociality in cichlids and may provide a mechanistic substrate for the evolution of sociality.

3.
Mol Ecol ; 26(2): 505-518, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27862511

RESUMEN

Gene expression differences between males and females often underlie sexually dimorphic phenotypes, and the expression levels of genes that are differentially expressed between the sexes are thought to respond to sexual selection. Most studies on the transcriptomic response to sexual selection treat sexual selection as a single force, but postmating sexual selection in particular is expected to specifically target gonadal tissue. The three male morphs of the ocellated wrasse (Symphodus ocellatus) make it possible to test the role of postmating sexual selection in shaping the gonadal transcriptome. Nesting males hold territories and have the highest reproductive success, yet we detected feminization of their gonadal gene expression compared to satellite males. Satellite males are less brightly coloured and experience more intense sperm competition than nesting males. In line with postmating sexual selection affecting gonadal gene expression, we detected a more masculinized expression profile in satellites. Sneakers are the lowest quality males and showed both de-masculinization and de-feminization of gene expression. We also detected higher rates of gene sequence evolution of male-biased genes compared to unbiased genes, which could at least in part be explained by positive selection. Together, these results reveal the potential for postmating sexual selection to drive higher rates of gene sequence evolution and shape the gonadal transcriptome profile.


Asunto(s)
Perciformes/genética , Reproducción , Espermatozoides/fisiología , Transcriptoma , Animales , Evolución Molecular , Femenino , Masculino , Fenotipo , Conducta Sexual Animal
4.
Nat Commun ; 7: 12452, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27529581

RESUMEN

In species with internal fertilization, females can favour certain males over others, not only before mating but also within the female's reproductive tract after mating. Here, we ask whether such directional post-mating (that is, cryptic) female mate choice can also occur in species with external fertilization. Using an in vitro sperm competition experiment, we demonstrate that female ovarian fluid (ovarian fluid) changes the outcome of sperm competition by decreasing the importance of sperm number thereby increasing the relative importance of sperm velocity. We further show that ovarian fluid does not differentially affect sperm from alternative male phenotypes, but generally enhances sperm velocity, motility, straightness and chemoattraction. Under natural conditions, female ovarian fluid likely increases the paternity of the preferred parental male phenotype, as these males release fewer but faster sperm. These results imply females have greater control over fertilization and potential to exert selection on males in species with external fertilization than previously thought possible.


Asunto(s)
Líquidos Corporales/metabolismo , Conducta de Elección/fisiología , Fertilización/fisiología , Ovario/metabolismo , Espermatozoides/fisiología , Animales , Femenino , Masculino , Perciformes/fisiología , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Recuento de Espermatozoides
5.
Horm Behav ; 80: 30-38, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26519858

RESUMEN

Comparative studies have revealed that vasopressin-oxytocin pathways are associated with both pair bonding and grouping behavior. However, the relationship between pair bonding and grouping behavior remains unclear. In this study, our aim was to identify whether two species that differ in grouping behavior display a corresponding difference in their pair bonds, and in the underlying vasopressin-oxytocin hormonal pathways. Using two species of cichlid fishes, the highly social Neolamprologus pulcher and the non-social Telmatochromis temporalis, we measured proximity of pairs during pair bond formation, and then measured social behaviors (proximity, aggression, submission, affiliation) and brain gene expression of isotocin and arginine vasotocin (the teleost homologues of oxytocin and vasopressin, respectively), as well as their receptors, after a temporary separation and subsequent reunion of the bonded pairs. Pairs of the social species spent more time in close proximity relative to the non-social species. Rates of aggression increased in both species following the separation and reunion treatment, relative to controls that were not separated. Overall, whole brain expression of isotocin was higher in the social species relative to the non-social species, and correlated with proximity, submission, and affiliation, but only in the social species. Our results suggest that both a social and a non-social cichlid species have similar behavioral responses to a temporary separation from a mate, and we found no difference in the brain gene expression of measured hormones and receptors based on our separation-reunion treatment. However, our results highlight the importance of isotocin in mediating submissive and affiliative behaviors in cichlid fishes, and demonstrate that isotocin has species-specific correlations with socially relevant behaviors.


Asunto(s)
Encéfalo/metabolismo , Cíclidos/genética , Expresión Génica/genética , Oxitocina/análogos & derivados , Apareamiento , Conducta Social , Vasotocina/genética , Agresión/fisiología , Animales , Cíclidos/fisiología , Femenino , Masculino , Oxitocina/genética , Especificidad de la Especie , Estadística como Asunto
6.
Horm Behav ; 75: 160-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26204804

RESUMEN

Despite wide variation in the complexity of social interactions across taxa, the basic behavioral components of sociality appear to be modulated by conserved hormone pathways. Specifically, the nonapeptide hormones oxytocin and vasopressin and their receptors have been implicated in regulating diverse social behaviors across vertebrates. Here, we took advantage of the repeated evolution of cooperative breeding in African cichlids to investigate whether there are consistent brain gene expression patterns of isotocin and arginine vasotocin (teleost homologues of oxytocin and vasopressin), as well as their receptors, between four closely related pairs of social (cooperative) and non-social (non-cooperative) species. We first found that the coding sequences for the five genes studied were highly conserved across the eight species. This is the first study to examine the expression of both isotocin receptors, and so we performed a phylogenetic analysis that suggests that these two isotocin receptors are paralogues that arose during the teleost genome duplication. When we then examined brain gene expression patterns relative to social system, we found that there were whole-brain gene expression differences between the social and non-social species in many of the species pairs. However, these relationships varied in both the direction and magnitude among the four species pairs. In conclusion, our results suggest high sequence conservation and species-specific gene expression patterns relative to social behavior for these candidate hormone pathways in the cichlid fishes.


Asunto(s)
Evolución Biológica , Cíclidos/fisiología , Oxitocina/análogos & derivados , Conducta Social , Vasotocina/genética , Animales , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Conducta Animal/fisiología , Cíclidos/genética , Expresión Génica , Masculino , Oxitocina/genética , Oxitocina/metabolismo , Filogenia , Transducción de Señal/genética , Especificidad de la Especie , Vasotocina/metabolismo
7.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26136450

RESUMEN

The degree to which group members share reproduction is dictated by both within-group (e.g. group size and composition) and between-group(e.g. density and position of neighbours) characteristics. While many studies have investigated reproductive patterns within social groups, few have simultaneously explored how within-group and between-group social structure influence these patterns. Here, we investigated how group size and composition, along with territory density and location within the colony, influenced parentage in 36 wild groups of a colonial, cooperatively breeding fish Neolamprologus pulcher. Dominant males sired 76% of offspring in their group, whereas dominant females mothered 82% of offspring in their group. Subordinate reproduction was frequent, occurring in 47% of sampled groups. Subordinate males gained more paternity in groups located in high-density areas and in groups with many subordinate males. Dominant males and females in large groups and in groups with many reproductively mature subordinates had higher rates of parentage loss, but only at the colony edge. Our study provides, to our knowledge,the first comprehensive quantification of reproductive sharing among groups of wild N. pulcher, a model species for the study of cooperation and social behaviour. Further, we demonstrate that the frequency of extra-pair parentage differs across small social and spatial scales.


Asunto(s)
Cíclidos/fisiología , Conducta Cooperativa , Conducta Sexual Animal , Predominio Social , Animales , Tamaño Corporal , Femenino , Masculino , Reproducción
8.
R Soc Open Sci ; 2(2): 140072, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26064593

RESUMEN

The mammalian nonapeptide hormones, vasopressin and oxytocin, are known to be potent regulators of social behaviour. Teleost fishes possess vasopressin and oxytocin homologues known as arginine vasotocin (AVT) and isotocin (IT), respectively. The role of these homologous nonapeptides in mediating social behaviour in fishes has received far less attention. The extraordinarily large number of teleost fish species and the impressive diversity of their social systems provide us with a rich test bed for investigating the role of nonapeptides in regulating social behaviour. Existing studies, mostly focused on AVT, have revealed relationships between the nonapeptides, and both social behaviour and dominance status in fishes. To date, much of the work on endogenous nonapeptides in fish brains has measured genomic or neuroanatomical proxies of nonapeptide production rather than the levels of these molecules in the brain. In this study, we measure biologically available AVT and IT levels in the brains of Neolamprologus pulcher, a cooperatively breeding cichlid fish, using high performance liquid chromatography with fluorescence detection. We found that brain AVT levels were higher in the subordinate than in dominant animals, and levels of IT correlated negatively with the expression of affiliative behaviour. We contrast these results with previous studies, and we discuss the role the nonapeptide hormones may play in the regulation of social behaviour in this highly social animal.

9.
Naturwissenschaften ; 101(10): 839-49, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25135814

RESUMEN

Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding (Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour (Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.


Asunto(s)
Cíclidos/inmunología , Inmunidad Innata/inmunología , Animales , Cíclidos/clasificación , Inmunidad Innata/efectos de los fármacos , Filogenia , Fitohemaglutininas/farmacología , Conducta Social , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA