RESUMEN
No large-scale genome-wide association studies (GWASs) of psychosis have been conducted in Mexico or Latin America to date. Schizophrenia and bipolar disorder in particular have been found to be highly heritable and genetically influenced. However, understanding of the biological basis of psychosis in Latin American populations is limited as previous genomic studies have almost exclusively relied on participants of Northern European ancestry. With the goal of expanding knowledge on the genomic basis of psychotic disorders within the Mexican population, the National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), the Harvard T.H. Chan School of Public Health, and the Broad Institute's Stanley Center for Psychiatric Research launched the Neuropsychiatric Genetics Research of Psychosis in Mexican Populations (NeuroMex) project to collect and analyze case-control psychosis samples from 5 states across Mexico. This article describes the planned sample collection and GWAS protocol for the NeuroMex study. The 4-year study will span from April 2018 to 2022 and aims to recruit 9,208 participants: 4,604 cases and 4,604 controls. Study sites across Mexico were selected to ensure collected samples capture the genomic diversity within the Mexican population. Blood samples and phenotypic data will be collected during the participant interview process and will contribute to the development of a local biobank in Mexico. DNA extraction will be done locally and genetic analysis will take place at the Broad Institute in Cambridge, MA. We will collect extensive phenotypic information using several clinical scales. All study materials including phenotypic instruments utilized are openly available in Spanish and English. The described study represents a long-term collaboration of a number of institutions from across Mexico and the Boston area, including clinical psychiatrists, clinical researchers, computational biologists, and managers at the 3 collaborating institutions. The development of relevant data management, quality assurance, and analysis plans are the primary considerations in this protocol article. Extensive management and analysis processes were developed for both the phenotypic and genetic data collected. Capacity building, partnerships, and training between and among the collaborating institutions are intrinsic components to this study and its long-term success.
RESUMEN
Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 × 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 × 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Transportadores de Ácidos Monocarboxílicos/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Animales , Pueblo Asiatico/genética , Población Negra/genética , Estudios de Cohortes , Retículo Endoplásmico/genética , Femenino , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Células HeLa , Humanos , Indígenas Norteamericanos/genética , Metabolismo de los Lípidos/genética , Hígado/citología , Hígado/metabolismo , Masculino , México , Hombre de Neandertal/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/metabolismo , Población Blanca/genéticaRESUMEN
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant disease characterized by progressive cerebellar ataxia and macular degeneration causing progressive blindness. It accounts for 1 to 11.6 % of spinocerebellar ataxias (SCAs) cases worldwide and for 7.4 % of SCA7 cases in Mexico. We identified a cluster of SCA7 families who resided in a circumscribed area of Veracruz and investigated whether the high incidence of the disease in this region was due to a founder effect. A total of 181 individuals from 20 families were studied. Four microsatellite markers and one SNP flanking the ATNX7 gene were genotyped and the ancestral origin and local ancestry analysis of the SCA7 mutation were evaluated. Ninety individuals from 19 families had the SCA7 mutation; all were found to share a common haplotype, suggesting that the mutation in these families originated from a common ancestor. Ancestral origin and local ancestry analysis of SCA7 showed that the chromosomal segment containing the mutation was of European origin. We here present evidence strongly suggesting that the high frequency of SCA7 in Veracruz is due to a founder effect and that the mutation is most likely of European origin with greatest resemblance to the Finnish population.