Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 265: 116683, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213819

RESUMEN

Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Oxígeno , Humanos , Oxígeno/metabolismo , Oxígeno/análisis , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Hígado/metabolismo , Hígado/química , Células CACO-2 , Sistemas Microfisiológicos
2.
J Am Soc Nephrol ; 31(7): 1479-1495, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32540856

RESUMEN

BACKGROUND: Genetic mutations in α-actinin-4 (ACTN4)-an important actin crosslinking cytoskeletal protein that provides structural support for kidney podocytes-have been linked to proteinuric glomerulosclerosis in humans. However, the effect of post-translational modifications of ACTN4 on podocyte integrity and kidney function is not known. METHODS: Using mass spectrometry, we found that ACTN4 is phosphorylated at serine (S) 159 in human podocytes. We used phosphomimetic and nonphosphorylatable ACTN4 to comprehensively study the effects of this phosphorylation in vitro and in vivo. We conducted x-ray crystallography, F-actin binding and bundling assays, and immunofluorescence staining to evaluate F-actin alignment. Microfluidic organ-on-a-chip technology was used to assess for detachment of podocytes simultaneously exposed to fluid flow and cyclic strain. We then used CRISPR/Cas9 to generate mouse models and assessed for renal injury by measuring albuminuria and examining kidney histology. We also performed targeted mass spectrometry to determine whether high extracellular glucose or TGF-ß levels increase phosphorylation of ACTN4. RESULTS: Compared with the wild type ACTN4, phosphomimetic ACTN4 demonstrated increased binding and bundling activity with F-actin in vitro. Phosphomimetic Actn4 mouse podocytes exhibited more spatially correlated F-actin alignment and a higher rate of detachment under mechanical stress. Phosphomimetic Actn4 mice developed proteinuria and glomerulosclerosis after subtotal nephrectomy. Moreover, we found that exposure to high extracellular glucose or TGF-ß stimulates phosphorylation of ACTN4 at S159 in podocytes. CONCLUSIONS: These findings suggest that increased phosphorylation of ACTN4 at S159 leads to biochemical, cellular, and renal pathology that is similar to pathology resulting from human disease-causing mutations in ACTN4. ACTN4 may mediate podocyte injury as a consequence of both genetic mutations and signaling events that modulate phosphorylation.


Asunto(s)
Actinina/metabolismo , Albuminuria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Podocitos/metabolismo , Procesamiento Proteico-Postraduccional , Actinina/genética , Actinas/metabolismo , Actinas/ultraestructura , Albuminuria/etiología , Albuminuria/patología , Animales , Células Cultivadas , Femenino , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/patología , Glucosa/farmacología , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Ratones , Nefrectomía/efectos adversos , Peptidomiméticos , Fosforilación/efectos de los fármacos , Unión Proteica , Serina/metabolismo , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA