Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0211324, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283121

RESUMEN

Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.

2.
Clin Infect Dis ; 71(7): e141-e150, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31712802

RESUMEN

BACKGROUND: Carbapenemase-producing Klebsiella pneumoniae has become a global priority, not least in low- and middle-income countries. Here, we report the emergence and clinical impact of a novel Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP) sequence type (ST) 16 clone in a clonal complex (CC) 258-endemic setting. METHODS: In a teaching Brazilian hospital, a retrospective cohort of adult KPC-KP bloodstream infection (BSI) cases (January 2014 to December 2016) was established to study the molecular epidemiology and its impact on outcome (30-day all-cause mortality). KPC-KP isolates underwent multilocus sequence typing. Survival analysis between ST/CC groups and risk factors for fatal outcome (logistic regression) were evaluated. Representative isolates underwent whole-genome sequencing and had their virulence tested in a Galleria larvae model. RESULTS: One hundred sixty-five unique KPC-KP BSI cases were identified. CC258 was predominant (66%), followed by ST16 (12%). The overall 30-day mortality rate was 60%; in contrast, 95% of ST16 cases were fatal. Patients' severity scores were high and baseline clinical variables were not statistically different across STs. In multivariate analysis, ST16 (odds ratio [OR], 21.4; 95% confidence interval [CI], 2.3-202.8; P = .008) and septic shock (OR, 11.9; 95% CI, 4.2-34.1; P < .001) were independent risk factors for fatal outcome. The ST16 clone carried up to 14 resistance genes, including blaKPC-2 in an IncFIBpQIL plasmid, KL51 capsule, and yersiniabactin virulence determinants. The ST16 clone was highly pathogenic in the larvae model. CONCLUSIONS: Mortality rates were high in this KPC-KP BSI cohort, where CC258 is endemic. An emerging ST16 clone was associated with high mortality. Our results suggest that even in endemic settings, highly virulent clones can rapidly emerge demanding constant monitoring.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Adulto , Antibacterianos , Proteínas Bacterianas/genética , Brasil/epidemiología , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Estudios Retrospectivos , beta-Lactamasas/genética
3.
Front Microbiol ; 9: 220, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503635

RESUMEN

The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the blaKPC-2 was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA