RESUMEN
We present a genome polymorphisms/machine learning approach for severe COVID-19 prognosis. Ninety-six Brazilian severe COVID-19 patients and controls were genotyped for 296 innate immunity loci. Our model used a feature selection algorithm, namely recursive feature elimination coupled with a support vector machine, to find the optimal loci classification subset, followed by a support vector machine with the linear kernel (SVM-LK) to classify patients into the severe COVID-19 group. The best features that were selected by the SVM-RFE method included 12 SNPs in 12 genes: PD-L1, PD-L2, IL10RA, JAK2, STAT1, IFIT1, IFIH1, DC-SIGNR, IFNB1, IRAK4, IRF1, and IL10. During the COVID-19 prognosis step by SVM-LK, the metrics were: 85% accuracy, 80% sensitivity, and 90% specificity. In comparison, univariate analysis under the 12 selected SNPs showed some highlights for individual variant alleles that represented risk (PD-L1 and IFIT1) or protection (JAK2 and IFIH1). Variant genotypes carrying risk effects were represented by PD-L2 and IFIT1 genes. The proposed complex classification method can be used to identify individuals who are at a high risk of developing severe COVID-19 outcomes even in uninfected conditions, which is a disruptive concept in COVID-19 prognosis. Our results suggest that the genetic context is an important factor in the development of severe COVID-19.
Asunto(s)
COVID-19 , Genoma Humano , Humanos , Antígeno B7-H1 , Helicasa Inducida por Interferón IFIH1 , Brasil/epidemiología , COVID-19/diagnóstico , COVID-19/genética , Inteligencia Artificial , Algoritmos , GenómicaRESUMEN
Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.
RESUMEN
BACKGROUND: DENV infection can induce different clinical manifestations varying from mild forms to dengue fever (DF) or the severe hemorrhagic fever (DHF). Several factors are involved in the progression from DF to DHF. No marker is available to predict this progression. Such biomarker could allow a suitable medical care at the beginning of the infection, improving patient prognosis. OBJECTIVES: The aim of this study was to compare the serum expression levels of acute phase proteins in a well-established cohort of dengue fever (DF) and dengue hemorrhagic fever (DHF) patients, in order to individuate a prognostic marker of diseases severity. STUDY DESIGN: The serum levels of 36 cytokines, chemokines and acute phase proteins were determined in DF and DHF patients and compared to healthy volunteers using a multiplex protein array and near-infrared (NIR) fluorescence detection. Serum levels of IL-1ra, IL-23, MIF, sCD40 ligand, IP-10 and GRO-α were also determined by ELISA. RESULTS: At the early stages of infection, GRO-α and IP-10 expression levels were different in DF compared to DHF patients. Besides, GRO-α was positively correlated with platelet counts and IP-10 was negatively correlated with total protein levels. CONCLUSIONS: These findings suggest that high levels of GRO-α during acute DENV infection may be associated with a good prognosis, while high levels of IP-10 may be a warning sign of infection severity.
Asunto(s)
Biomarcadores/sangre , Citocinas/sangre , Dengue/patología , Análisis por Matrices de Proteínas , Adolescente , Adulto , Femenino , Humanos , Masculino , Pronóstico , Suero/química , Voluntarios , Adulto JovenRESUMEN
Dengue is an acute febrile disease caused by the mosquito-borne dengue virus (DENV) that according to clinical manifestations can be classified as asymptomatic, mild or severe dengue. Severe dengue cases have been associated with an unbalanced immune response characterised by an over secretion of inflammatory cytokines. In the present study we measured type I interferon (IFN-I) transcript and circulating levels in primary and secondary DENV infected patients. We observed that dengue fever (DF) and dengue haemorrhagic fever (DHF) patients express IFN-I differently. While DF and DHF patients express interferon-α similarly (52,71 ± 7,40 and 49,05 ± 7,70, respectively), IFN- ß were associated with primary DHF patients. On the other hand, secondary DHF patients were not able to secrete large amounts of IFN- ß which in turn may have influenced the high-level of viraemia. Our results suggest that, in patients from our cohort, infection by DENV serotype 3 elicits an innate response characterised by higher levels of IFN- ß in the DHF patients with primary infection, which could contribute to control infection evidenced by the low-level of viraemia in these patients. The present findings may contribute to shed light in the role of innate immune response in dengue pathogenesis.
Asunto(s)
Interferón beta/sangre , Dengue Grave/sangre , Enfermedad Aguda , Adolescente , Adulto , Brasil , Femenino , Humanos , Masculino , Dengue Grave/inmunología , Adulto JovenAsunto(s)
Encéfalo/diagnóstico por imagen , Microcefalia/diagnóstico por imagen , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/complicaciones , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/virología , Embarazo , Tomografía Computarizada por Rayos X , Infección por el Virus Zika/diagnóstico por imagenRESUMEN
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Asunto(s)
Endosomas/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/química , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Vías Secretoras , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Exosomas/metabolismo , Femenino , Células HEK293 , Humanos , Inmunización , Activación de Linfocitos/inmunología , Ratones Endogámicos BALB C , Estructura Terciaria de Proteína , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Transcripción Genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.
Asunto(s)
Virus del Dengue/genética , Genética Inversa , ARN Viral/genética , Replicación Viral/genética , Escherichia coli/genética , Vectores Genéticos/genética , PlásmidosRESUMEN
Currently, several assays can confirm acute dengue infection at the point-of-care. However, none of these assays can predict the severity of the disease symptoms. A prognosis test that predicts the likelihood of a dengue patient to develop a severe form of the disease could permit more efficient patient triage and treatment. We hypothesise that mRNA expression of apoptosis and innate immune response-related genes will be differentially regulated during the early stages of dengue and might predict the clinical outcome. Aiming to identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral blood mononuclear cells of mild and severe dengue patients during the febrile stage of the disease to measure the expression levels of selected genes by quantitative polymerase chain reaction. The selected candidate biomarkers were previously identified by our group as differentially expressed in microarray studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and FCGR3B were differentially expressed between patients who developed clinical symptoms associated with the mild type of dengue and patients who showed clinical symptoms associated with severe dengue. We suggest that this gene expression panel could putatively serve as biomarkers for the clinical prognosis of dengue haemorrhagic fever.
Asunto(s)
Antígenos de Neoplasias/genética , Cisteína Endopeptidasas/genética , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Peroxirredoxinas/genética , Receptores de IgG/genética , Receptores de Interleucina-1/genética , Dengue Grave/diagnóstico , Índice de Severidad de la Enfermedad , Proteínas Reguladoras de la Apoptosis/genética , Biomarcadores , Proteínas Ligadas a GPI/genética , Expresión Génica , Humanos , Inmunidad Innata/genética , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/patología , Análisis por Micromatrices , Pronóstico , ARN Mensajero/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , SerotipificaciónRESUMEN
Human leukocyte antigen (HLA) alleles have been correlated with susceptibility or resistance to severe dengue; however, few immunogenetic studies have been performed in Latin American (LA) populations. We have conducted immunogenetic studies of HLA class I and II alleles in a cohort of 187 patients with DENV-3 infection and confirmed clinical diagnosis of either severe dengue, known as dengue hemorrhagic fever (DHF), or the less severe form, dengue fever (DF), in Recife, Pernambuco, Brazil. An association analysis was performed using Fisher's association test, with odds ratios (ORs) calculated using conditional maximum likelihood estimates. HLA-B∗44 (P = 0.047, OR = 2.025, 95% CI = 0.97-4.24) was found to be associated with increased susceptibility to DHF in response to DENV-3 infection. In addition, HLA-B∗07 (P = 0.048, OR = 0.501, one-sided 95% CI = 0-0.99) and HLA-DR∗13 (P = 0.028, OR = 0.511, one-sided 95% CI = 0-0.91) were found to be associated with resistance to secondary dengue infection by DENV-3. These results suggest that HLA-B∗44 supertype alleles and their respective T-cell responses might be involved in susceptibility to severe dengue infections, whereas the HLA-B∗07 supertype alleles and DR∗13 might be involved in cross-dengue serotype immunity.
RESUMEN
Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast-E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli. RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.
Asunto(s)
Virus del Dengue/genética , ARN Viral/genética , Genética Inversa , Replicación Viral/genética , Escherichia coli/genética , Vectores Genéticos/genética , PlásmidosRESUMEN
Sindbis virus (SINV) induces inflammatory and vasoactive responses that are associated with rash and arthritis in human infections. The mechanisms underlying infection-associated microvasculopathy are still unknown. We investigated whether endothelial cells infected by SINV are differentially responsive to bradykinin (BK), a potent inducer of inflammatory edema in a broad range of infectious diseases. Human endothelial cells (HBMECs) infected with SINV presented an upregulation of bradykinin B2 receptors (BK2R) expression. Also, BK reduced SINV-induced apoptosis and enhanced virus replication in HBMECs in a way dependent on BK2R, PI3 kinase and ERK signaling. Strikingly, intracerebral infection of mice in the presence of a BK2R antagonist reduced the local viral load. Our data suggest that SINV infection renders human endothelial cells hypersensitive to BK, which increases host cell survival and viral replication. Ongoing studies may clarify if the deregulation of the kinin pathway contributes to infection-associated vasculopathies in life-threatening arbovirus infections.