Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 163(2): 646-61, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19540314

RESUMEN

Epoxide hydrolases comprise a family of enzymes important in detoxification and conversion of lipid signaling molecules, namely epoxyeicosatrienoic acids (EETs), to their supposedly less active form, dihydroxyeicosatrienoic acids (DHETs). EETs control cerebral blood flow, exert analgesic, anti-inflammatory and angiogenic effects and protect against ischemia. Although the role of soluble epoxide hydrolase (sEH) in EET metabolism is well established, knowledge on its detailed distribution in rodent brain is rather limited. Here, we analyzed the expression pattern of sEH and of another important member of the EH family, microsomal epoxide hydrolase (mEH), in mouse brain by immunohistochemistry. To investigate the functional relevance of these enzymes in brain, we explored their individual contribution to EET metabolism in acutely isolated brain cells from respective EH -/- mice and wild type littermates by mass spectrometry. We find sEH immunoreactivity almost exclusively in astrocytes throughout the brain, except in the central amygdala, where neurons are also positive for sEH. mEH immunoreactivity is abundant in brain vascular cells (endothelial and smooth muscle cells) and in choroid plexus epithelial cells. In addition, mEH immunoreactivity is present in specific neuronal populations of the hippocampus, striatum, amygdala, and cerebellum, as well as in a fraction of astrocytes. In freshly isolated cells from hippocampus, where both enzymes are expressed, sEH mediates the bulk of EET metabolism. Yet we observe a significant contribution of mEH, pointing to a novel role of this enzyme in the regulation of physiological processes. Furthermore, our findings indicate the presence of additional, hitherto unknown cerebral epoxide hydrolases. Taken together, cerebral EET metabolism is driven by several epoxide hydrolases, a fact important in view of the present targeting of sEH as a potential therapeutic target. Our findings suggest that these different enzymes have individual, possibly quite distinct roles in brain function and cerebral EET metabolism.


Asunto(s)
Encéfalo/metabolismo , Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/metabolismo , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Vasos Sanguíneos/enzimología , Vasos Sanguíneos/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Células Cultivadas , Plexo Coroideo/enzimología , Plexo Coroideo/metabolismo , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Epóxido Hidrolasas/genética , Femenino , Inmunohistoquímica , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Caracteres Sexuales
2.
Neuroscience ; 142(1): 125-37, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16859834

RESUMEN

Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely unknown, we investigated ADK expression and cellular localization during postnatal development of the mouse brain, using immunofluorescence staining with cell-type specific markers. At early postnatal stages ADK immunoreactivity was prominent in neurons, notably in cerebral cortex and hippocampus. Thereafter, as seen best in hippocampus, ADK gradually disappeared from neurons and appeared in newly developed nestin- and glial fibrillary acidic protein (GFAP)-positive astrocytes. Furthermore, the region-specific downregulation of neuronal ADK coincided with the onset of myelination, as visualized by myelin basic protein staining. After postnatal day 14 (P14), the transition from neuronal to astrocytic ADK expression was complete, except in a subset of neurons that retained ADK until adulthood in specific regions, such as striatum. Moreover, neuronal progenitors in the adult dentate gyrus lacked ADK. Finally, recordings of excitatory field potentials in acute slice preparations revealed a reduced adenosinergic inhibition in P14 hippocampus compared with adult. These findings suggest distinct roles for adenosine in the developing and adult brain. First, ADK expression in young neurons may provide a salvage pathway to utilize adenosine in nucleic acid synthesis, thus supporting differentiation and plasticity and influencing myelination; and second, adult ADK expression in astrocytes may offer a mechanism to regulate adenosine levels as a function of metabolic needs and synaptic activity, thus contributing to the differential resistance of young and adult animals to seizures.


Asunto(s)
Adenosina Quinasa/metabolismo , Astrocitos/enzimología , Encéfalo , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/enzimología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Recuento de Células/métodos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica/métodos , Técnicas In Vitro , Ratones , Proteína Básica de Mielina/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Fosfopiruvato Hidratasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA