Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Infect Dis ; 73(3): 406-413, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32459308

RESUMEN

BACKGROUND: Artesunate-amodiaquine is a potential therapy for uncomplicated malaria in Cambodia. METHODS: Between September 2016 and January 2017, artesunate-amodiaquine efficacy and safety were evaluated in a prospective, open-label, single-arm observational study at health centers in Mondulkiri, Pursat, and Siem Reap Provinces, Cambodia. Adults and children with microscopically confirmed Plasmodium falciparum malaria received oral artesunate-amodiaquine once daily for 3 days plus single-dose primaquine, with follow-up on days 7, 14, 21, and 28. The primary outcome was day-28 polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR). An amodiaquine parasite survival assay (AQSA) was developed and applied to whole genome sequencing results to evaluate potential amodiaquine resistance molecular markers. RESULTS: In 63 patients, day-28 PCR-adjusted ACPR was 81.0% (95% confidence interval [CI], 68.9-88.7). Day 3 parasite positivity rate was 44.4% (28/63; 95% CI, 31.9-57.5). All 63 isolates had the K13(C580Y) marker for artemisinin resistance; 79.4% (50/63) had Pfpm2 amplification. The AQSA resistance phenotype (≥45% parasite survival) was expressed in 36.5% (23/63) of isolates and was significantly associated with treatment failure (P = .0020). Pfmdr1 mutant haplotypes were N86/184F/D1246, and Pfcrt was CVIET or CVIDT at positions 72-76. Additional Pfcrt mutations were not associated with amodiaquine resistance, but the G353V mutant allele was associated with ACPR compared to Pfmdr1 haplotypes harboring F1068L or S784L/R945P mutations (P = .030 and P = .0004, respectively). CONCLUSIONS: For uncomplicated falciparum malaria in Cambodia, artesunate-amodiaquine had inadequate efficacy owing to amodiaquine-resistant P. falciparum. Amodiaquine resistance was not associated with previously identified molecular markers.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Adulto , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Artesunato/uso terapéutico , Asia , Cambodia , Niño , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Estudios Prospectivos
2.
Glia ; 66(5): 971-986, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29399880

RESUMEN

Microglial cells have a double life as the immune cells of the brain in times of stress but have also specific physiological functions in homeostatic conditions. In pathological contexts, microglia undergo a phenotypic switch called "reaction" that promotes the initiation and the propagation of neuro-inflammation. Reaction is complex, molecularly heterogeneous and still poorly characterized, leading to the concept that microglial reactivity might be too diverse to be molecularly defined. However, it remains unknown whether reactive microglia from different pathological contexts share a common molecular signature. Using improved flow cytometry and RNAseq approaches we studied, with higher statistical power, the remodeling of microglia transcriptome in a mouse model of sepsis. Through bioinformatic comparison of our results with published datasets, we defined the microglial reactome as a set of genes discriminating reactive from homeostatic microglia. Ultimately, we identified a subset of 86 genes deregulated in both acute and neurodegenerative conditions. Our data provide a new comprehensive resource that includes functional analysis and specific molecular markers of microglial reaction which represent new tools for its unambiguous characterization.


Asunto(s)
Corteza Cerebral/metabolismo , Microglía/metabolismo , Sepsis/metabolismo , Transcriptoma , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Homeostasis/fisiología , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroinmunomodulación/fisiología , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA