Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 7105, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501428

RESUMEN

An experimental effort was conducted to measure the change in internal energy of non-ideal carbon dioxide as its volume rapidly expanded with the sudden opening of a valve from one to two compressed gas cylinders. This was achieved by measuring the mass heat capacity of the gas cylinders and the manifold-valve, and measuring the change in temperature from the sudden doubling of volume of the non-ideal carbon dioxide. It was determined that an empirical equation for the change in internal energy of a non-ideal fluid was more accurate than previous methods used for estimating the change in internal energy by estimating the change in entropy. With this empirical equation, a theoretical ideal Stirling cycle heat engine that exceeds the Carnot efficiency was realized by utilizing non-ideal carbon dioxide as a working fluid.

2.
PLoS One ; 12(4): e0175198, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426674

RESUMEN

An effort was made to study and characterize the evolution of transient tribological wear in the presence of sliding contact. Sliding contact is often characterized experimentally via the standard ASTM D4172 four-ball test, and these tests were conducted for varying times ranging from 10 seconds to 1 hour, as well as at varying temperatures and loads. A numerical model was developed to simulate the evolution of wear in the elastohydrodynamic regime. This model uses the results of a Monte Carlo study to develop novel empirical equations for wear rate as a function of asperity height and lubricant thickness; these equations closely represented the experimental data and successfully modeled the sliding contact.


Asunto(s)
Fricción , Ensayo de Materiales , Temperatura , Materiales Biocompatibles , Lubrificación , Modelos Teóricos
3.
PLoS One ; 12(1): e0168149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28076418

RESUMEN

A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.


Asunto(s)
Automóviles , Electricidad , Modelos Teóricos
4.
Appl Opt ; 55(14): 3740-5, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168285

RESUMEN

By orthogonally dual-shifting the air-hole rows in the triangular photonic crystal waveguide, a novel finely engineered slow light silicon photonic crystal waveguide is designed for higher-order temporal solitons and ultrashort temporal pulse compression with a large fabrication tolerance. The engineering of dispersion provides the waveguide with a wide wavelength range with only low anomalous dispersion covering, which makes the compression ratio wavelength-independent and stable even under ultralow input pulse energy. The simulation results are based on nonlinear Schrödinger equation modeling, which demonstrates that the input picosecond pulses in the broad wavelength range with ultralow pJ pulse energy can be stably compressed by a factor of 6 to higher-order temporal solitons in a 250 µm short waveguide.

5.
Opt Express ; 23(8): 10282-92, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969070

RESUMEN

We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

6.
Opt Lett ; 38(21): 4401-4, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24177104

RESUMEN

We demonstrate the evolution of picosecond pulses in silicon nanowire waveguides by sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. Due to the unambiguous temporal direction and ultrahigh sensitivity of the SFG-XFROG, which enable observation of the pulse accelerations, the captured pulses' temporal and spectral characteristics showed remarkable agreement with NLSE predictions. The temporal intensity redistribution of the pulses through the silicon nanowire waveguide for various input pulse energies is analyzed experimentally and numerically to demonstrate the nonlinear contributions of self-phase modulation, two-photon absorption, and free carriers. It indicates that free carrier absorption dominates the pulse acceleration. The model for pulse evolution during propagation through arbitrary lengths of silicon nanowire waveguides is established by NLSE, in support of chip-scale optical interconnects and signal processing.

7.
Appl Opt ; 52(20): 4813-9, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23852193

RESUMEN

Optical soliton pulses offer many applications within optical communication systems, but by definition a soliton is only subjected to second-order anomalous group-velocity-dispersion; an understanding of higher-order dispersion is necessary for practical implementation of soliton pulses. A numerical model of a waveguide was developed using the nonlinear Schrödinger equation, with parameters set to ensure the input pulse energy would be equal to the fundamental soliton energy. Higher-order group-velocity-dispersion was gradually increased, for various temporal widths and waveguide dispersions. A minimum pulse duration of 100 fs was determined to be necessary for fundamental soliton pulse propagation in practical photonic crystal waveguides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA