Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 12(1): 83-94, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574400

RESUMEN

Proteases are an important class of drug targets that continue to drive inhibitor discovery. These enzymes are prone to resistance mutations, yet their promise for treating viral diseases and other disorders continues to grow. This study develops a general approach for detecting microbially synthesized protease inhibitors and uses it to screen terpenoid pathways for inhibitory compounds. The detection scheme relies on a bacterial two-hybrid (B2H) system that links protease inactivation to the transcription of a swappable reporter gene. This system, which can accomodate multiple biochemical outputs (i.e., luminescence and antibiotic resistance), permitted the facile incorporation of four disease-relevant proteases. A B2H designed to detect the inactivation of the main protease of severe acute respiratory syndrome coronavirus 2 enabled the identification of a terpenoid inhibitor of modest potency. An analysis of multiple pathways that make this terpenoid, however, suggested that its production was necessary but not sufficient to confer a survival advantage in growth-coupled assays. This finding highlights an important challenge associated with the use of genetic selection to search for inhibitors─notably, the influence of pathway toxicity─and underlines the value of including multiple pathways with overlapping product profiles in pathway screens. This study provides a detailed experimental framework for using microbes to screen libraries of biosynthetic pathways for targeted protease inhibitors.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Proteasas , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores
2.
ACS Synth Biol ; 11(9): 3015-3027, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35984356

RESUMEN

Terpenoids, the largest and most structurally diverse group of natural products, include a striking variety of biologically active compounds, from flavors to medicines. Despite their well-documented biochemical versatility, the evolutionary processes that generate new functional terpenoids are poorly understood and difficult to recapitulate in engineered systems. This study uses a synthetic biochemical objective─a transcriptional system that links the inhibition of protein tyrosine phosphatase 1B (PTP1B), a human drug target, to the expression of a gene for antibiotic resistance in Escherichia coli (E. coli)─to evolve a terpene synthase to produce enzyme inhibitors. Site saturation mutagenesis of poorly conserved residues on γ-humulene synthase (GHS), a promicuous enzyme, yielded mutants that improved fitness (i.e., the antibiotic resistance of E. coli) by reducing GHS toxicity and/or by increasing inhibitor production. Intriguingly, a combination of two mutations enhanced the titer of a minority product─a terpene alcohol that inhibits PTP1B─by over 50-fold, and a comparison of similar mutants enabled the identification of a site where mutations permit efficient hydroxylation. Findings suggest that the plasticity of terpene synthases enables an efficient sampling of structurally distinct starting points for building new functional molecules and provide an experimental framework for exploiting this plasticity in activity-guided screens.


Asunto(s)
Transferasas Alquil y Aril , Productos Biológicos , Transferasas Alquil y Aril/genética , Escherichia coli/genética , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Terpenos
3.
Front Energy Res ; 82020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34164390

RESUMEN

Current sources of fermentation feedstocks, i.e. corn, sugar cane, or plant biomass, fall short of demand for liquid transportation fuels and commodity chemicals in the United States. Aquatic phototrophs including cyanobacteria have the potential to supplement the supply of current fermentable feedstocks. In this strategy, cells are engineered to accumulate storage molecules including glycogen, cellulose, and/or lipid oils that can be extracted from harvested biomass and fed to heterotrophic organisms engineered to produce desired chemical products. In this manuscript, we examine the production of glycogen in the model cyanobacteria, Synechococcus sp. strain PCC 7002, and subsequent conversion of cyanobacterial biomass by an engineered Escherichia coli to octanoic acid as a model product. In effort to maximize glycogen production, we explored the deletion of catabolic enzymes and overexpression of GlgC, an enzyme that catalyzes the first committed step towards glycogen synthesis. We found that deletion of glgP increased final glycogen titers when cells were grown in diurnal light. Overexpression of GlgC led to a temporal increase in glycogen content but not in an overall increase in final titer or content. The best strains were grown, harvested, and used to formulate media for growth of E. coli. The cyanobacterial media was able to support the growth of an engineered E. coli and produce octanoic acid at the same titer as common laboratory media.

4.
Metab Eng ; 44: 273-283, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29111438

RESUMEN

L-lysine and other amino acids are commonly produced through fermentation using strains of heterotrophic bacteria such as Corynebacterium glutamicum. Given the large amount of sugar this process consumes, direct photosynthetic production is intriguing alternative. In this study, we report the development of a cyanobacterium, Synechococcus sp. strain PCC 7002, capable of producing L-lysine with CO2 as the sole carbon-source. We found that heterologous expression of a lysine transporter was required to excrete lysine and avoid intracellular accumulation that correlated with poor fitness. Simultaneous expression of a feedback inhibition resistant aspartate kinase and lysine transporter were sufficient for high productivities, but this was also met with a decreased chlorophyll content and reduced growth rates. Increasing the reductant supply by using NH4+, a more reduced nitrogen source relative to NO3-, resulted in a two-fold increase in productivity directing 18% of fixed carbon to lysine. Given this advantage, we demonstrated lysine production from media formulated with a municipal wastewater treatment sidestream as a nutrient source for increased economic and environmental sustainability. Based on our results, we project that Synechococcus sp. strain PCC 7002 could produce lysine at areal productivities approaching that of sugar cane to lysine via fermentation using non-agricultural lands and low-cost feedstocks.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Aspartato Quinasa , Proteínas Bacterianas , Corynebacterium glutamicum/genética , Fotosíntesis , Synechococcus , Sistemas de Transporte de Aminoácidos/biosíntesis , Sistemas de Transporte de Aminoácidos/genética , Aspartato Quinasa/biosíntesis , Aspartato Quinasa/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Corynebacterium glutamicum/metabolismo , Lisina , Synechococcus/genética , Synechococcus/metabolismo
5.
Nat Microbiol ; 2(12): 1624-1634, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28947739

RESUMEN

Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.


Asunto(s)
Bacterias/enzimología , Bacterias/genética , Genes Bacterianos/genética , Ácidos Levulínicos/metabolismo , Redes y Vías Metabólicas/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Biomasa , Sistemas CRISPR-Cas/genética , Carbono/metabolismo , Elementos Transponibles de ADN , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ácidos Levulínicos/química , Ingeniería Metabólica , Operón/genética , Propionatos/metabolismo , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
6.
Metab Eng ; 38: 170-179, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27481676

RESUMEN

Trans-acting regulators provide novel opportunities to study essential genes and regulate metabolic pathways. We have adapted the clustered regularly interspersed palindromic repeats (CRISPR) system from Streptococcus pyogenes to repress genes in trans in the cyanobacterium Synechococcus sp. strain PCC 7002 (hereafter PCC 7002). With this approach, termed CRISPR interference (CRISPRi), transcription of a specific target sequence is repressed by a catalytically inactive Cas9 protein recruited to the target DNA by base-pair interactions with a single guide RNA that is complementary to the target sequence. We adapted this system for PCC 7002 and achieved conditional and titratable repression of a heterologous reporter gene, yellow fluorescent protein. Next, we demonstrated the utility of finely tuning native gene expression by downregulating the abundance of phycobillisomes. In addition, we created a conditional auxotroph by repressing synthesis of the carboxysome, an essential component of the carbon concentrating mechanism cyanobacteria use to fix atmospheric CO2. Lastly, we demonstrated a novel strategy for increasing central carbon flux by conditionally downregulating a key node in nitrogen assimilation. The resulting cells produced 2-fold more lactate than a baseline engineered cell line, representing the highest photosynthetically generated productivity to date. This work is the first example of titratable repression in cyanobacteria using CRISPRi, enabling dynamic regulation of essential processes and manipulation of flux through central carbon metabolism. This tool facilitates the study of essential genes of unknown function and enables groundbreaking metabolic engineering capability, by providing a straightforward approach to redirect metabolism and carbon flux in the production of high-value chemicals.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Ingeniería Metabólica/métodos , Streptococcus pyogenes/genética , Synechococcus/genética , Transactivadores/genética , Vías Biosintéticas/genética , Simulación por Computador , Regulación Bacteriana de la Expresión Génica/genética , Silenciador del Gen/fisiología , Mejoramiento Genético/métodos , Redes y Vías Metabólicas/ética , Modelos Biológicos , Transducción de Señal , Especificidad de la Especie
7.
Nat Chem Biol ; 12(4): 254-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26854666

RESUMEN

Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.


Asunto(s)
Endopeptidasas/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Proteolisis , Biología Sintética/métodos , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo , Regulación de la Expresión Génica , Plásmidos , Regiones Promotoras Genéticas , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Virulencia/química , Factores de Virulencia/genética
8.
ACS Chem Biol ; 10(5): 1217-26, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25668590

RESUMEN

Streptolysin S (SLS) is a post-translationally modified peptide cytolysin that is produced by the human pathogen Streptococcus pyogenes. SLS belongs to a large family of azole-containing natural products that are biosynthesized via an evolutionarily conserved pathway. SLS is an important virulence factor during S. pyogenes infections, but despite an extensive history of study, further investigations are needed to clarify several steps of its biosynthesis. To this end, chemical inhibitors of SLS biosynthesis would be valuable tools to interrogate the various maturation steps of both SLS and biosynthetically related natural products. Such chemical inhibitors could also potentially serve as antivirulence therapeutics, which in theory may alleviate the spread of antibiotic resistance. In this work, we demonstrate that FDA-approved HIV protease inhibitors, especially nelfinavir, block a key proteolytic processing step during SLS production. This inhibition was demonstrated in live S. pyogenes cells and through in vitro protease inhibition assays. A panel of 57 nelfinavir analogs was synthesized, leading to a series of compounds with improved anti-SLS activity while illuminating structure-activity relationships. Nelfinavir was also found to inhibit the maturation of other azole-containing natural products, namely those involved in listeriolysin S, clostridiolysin S, and plantazolicin production. The use of nelfinavir analogs as inhibitors of SLS production has allowed us to begin examining the proteolysis event in SLS maturation and will aid in further investigations of the biosynthesis of SLS and related natural products.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores de la Proteasa del VIH/farmacología , Estreptolisinas/antagonistas & inhibidores , Secuencia de Aminoácidos , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Proteínas Bacterianas/biosíntesis , Datos de Secuencia Molecular , Inhibidores de Proteasas/farmacología , Proteolisis , Homología de Secuencia de Aminoácido , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/metabolismo , Estreptolisinas/biosíntesis
9.
ACS Synth Biol ; 4(5): 595-603, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25216157

RESUMEN

The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system had a 48-fold dynamic range and was shown to out-perform Ptrc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002.


Asunto(s)
Expresión Génica/genética , Synechococcus/genética , Vitamina B 12/genética , Secuencia de Bases , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Biología Sintética/métodos
10.
PLoS One ; 8(10): e76594, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098537

RESUMEN

Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation, as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards Synechococcus sp. PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA, which is annotated as an acetyl-CoA ligase. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in Synechococcus sp. PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803).


Asunto(s)
Proteínas Bacterianas/genética , Coenzima A Ligasas/genética , Farmacorresistencia Bacteriana/genética , Selección Genética , Synechococcus/genética , Acrilatos/farmacología , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Ácido Láctico/análogos & derivados , Ácido Láctico/farmacología , Ingeniería Metabólica/métodos , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional , Mutación , Propionatos/farmacología , Seudogenes , Synechococcus/efectos de los fármacos , Synechococcus/crecimiento & desarrollo
11.
Anal Biochem ; 420(2): 191-3, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22001374

RESUMEN

Group A Streptococcus pyogenes (GAS) is a leading human pathogen that produces a powerful cytolytic bacteriocin known as streptolysin S (SLS). We have developed a bioengineering strategy to successfully reconstitute SLS activity using heterologous expression in laboratory strains of Escherichia coli. Our E. coli-based heterologous expression system will allow more detailed studies into the biosynthesis of other bacteriocin compounds and the production of these natural products in much greater yield.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Escherichia coli/genética , Ingeniería Genética/métodos , Estreptolisinas/biosíntesis , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Hemólisis/efectos de los fármacos , Familia de Multigenes/genética , Ovinos , Estreptolisinas/química , Estreptolisinas/genética , Estreptolisinas/toxicidad
12.
J Bacteriol ; 193(1): 215-24, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20971906

RESUMEN

Here we report on a novel thiazole/oxazole-modified microcin (TOMM) from Bacillus amyloliquefaciens FZB42, a Gram-positive soil bacterium. This organism is well known for stimulating plant growth and biosynthesizing complex small molecules that suppress the growth of bacterial and fungal plant pathogens. Like microcin B17 and streptolysin S, the TOMM from B. amyloliquefaciens FZB42 undergoes extensive posttranslational modification to become a bioactive natural product. Our data show that the modified peptide bears a molecular mass of 1,335 Da and displays antibacterial activity toward closely related Gram-positive bacteria. A cluster of 12 genes that covers ∼10 kb is essential for the production, modification, export, and self-immunity of this natural product. We have named this compound plantazolicin (PZN), based on the association of several producing organisms with plants and the incorporation of azole heterocycles, which derive from Cys, Ser, and Thr residues of the precursor peptide.


Asunto(s)
Bacillus/metabolismo , Bacteriocinas/metabolismo , Oxidorreductasas de Alcohol , Bacillus/genética , Bacteriocinas/química , Regulación Bacteriana de la Expresión Génica/fisiología , Estructura Molecular , Mutagénesis , Operón , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Biol Chem ; 285(36): 28220-8, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20581111

RESUMEN

Through elaboration of its botulinum toxins, Clostridium botulinum produces clinical syndromes of infant botulism, wound botulism, and other invasive infections. Using comparative genomic analysis, an orphan nine-gene cluster was identified in C. botulinum and the related foodborne pathogen Clostridium sporogenes that resembled the biosynthetic machinery for streptolysin S, a key virulence factor from group A Streptococcus responsible for its hallmark beta-hemolytic phenotype. Genetic complementation, in vitro reconstitution, mass spectral analysis, and plasmid intergrational mutagenesis demonstrate that the streptolysin S-like gene cluster from Clostridium sp. is responsible for the biogenesis of a novel post-translationally modified hemolytic toxin, clostridiolysin S.


Asunto(s)
Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Clostridium botulinum/genética , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Botulínicas/biosíntesis , Toxinas Botulínicas/química , Cromatografía Liquida , Clostridium botulinum/metabolismo , Biología Computacional , Prueba de Complementación Genética , Sitios Genéticos/genética , Genómica , Hemólisis , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Operón/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Streptococcus pyogenes/genética , Estreptolisinas/genética , Estreptolisinas/metabolismo , Espectrometría de Masas en Tándem , Factores de Virulencia/genética
14.
J Biol Chem ; 284(19): 13004-12, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19286651

RESUMEN

The human pathogen Streptococcus pyogenes secretes a highly cytolytic toxin known as streptolysin S (SLS). SLS is a key virulence determinant and responsible for the beta-hemolytic phenotype of these bacteria. Despite over a century of research, the chemical structure of SLS remains unknown. Recent experiments have revealed that SLS is generated from an inactive precursor peptide that undergoes extensive post-translational modification to an active form. In this work, we address outstanding questions regarding the SLS biosynthetic process, elucidating the features of substrate recognition and sites of posttranslational modification to the SLS precursor peptide. Further, we exploit these findings to guide the design of artificial cytolytic toxins that are recognized by the SLS biosynthetic enzymes and others that are intrinsically cytolytic. This new structural information has ramifications for future antimicrobial therapies.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Streptococcus pyogenes/química , Estreptolisinas/química , Estreptolisinas/metabolismo , Estreptolisinas/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ratones , Datos de Secuencia Molecular , Oxazoles/metabolismo , Prolina/metabolismo , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Estreptolisinas/genética , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Tiazoles/metabolismo , Virulencia
15.
Proc Natl Acad Sci U S A ; 105(15): 5879-84, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18375757

RESUMEN

Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes.


Asunto(s)
Bacteriocinas/biosíntesis , Familia de Multigenes , Streptococcus pyogenes/enzimología , Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Compuestos Heterocíclicos , Humanos , Complejos Multienzimáticos/metabolismo , Oxazoles , Estreptolisinas/metabolismo , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA