Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2408654121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226354

RESUMEN

Organisms display an immense variety of shapes, sizes, and reproductive strategies. At microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits that influence the spatial organization of microbial communities. In one such community-the human dental plaque biofilm-a network of filamentous Corynebacterium matruchotii cells forms the core of bacterial consortia known as hedgehogs, but the processes that generate these structures are unclear. Here, using live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan biosynthesis, we report an extraordinary example of simultaneous multiple division within the domain Bacteria. We show that C. matruchotii cells elongate at one pole through tip extension, similar to the growth strategy of soil-dwelling Streptomyces bacteria. Filaments elongate rapidly, at rates more than five times greater than other closely related bacterial species. Following elongation, many septa form simultaneously, and each cell divides into 3 to 14 daughter cells, depending on the length of the mother filament. The daughter cells then nucleate outgrowth of new thinner vegetative filaments, generating the classic "whip handle" morphology of this taxon. Our results expand the known diversity of bacterial cell cycles and help explain how this filamentous bacterium can compete for space, access nutrients, and form important interspecies interactions within dental plaque.


Asunto(s)
Peptidoglicano , Peptidoglicano/metabolismo , Corynebacterium/metabolismo , Corynebacterium/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , División Celular , Humanos , Placa Dental/microbiología
2.
mSystems ; 9(9): e0067424, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39166876

RESUMEN

Haemophilus parainfluenzae (Hp) is a Gram-negative, highly prevalent, and abundant commensal in the human oral cavity, and an infrequent extraoral opportunistic pathogen. Hp occupies multiple niches in the oral cavity, including the supragingival plaque biofilm. Little is known about how Hp interacts with its neighbors in healthy biofilms nor its mechanisms of pathogenesis as an opportunistic pathogen. To address this, we identified the essential genome and conditionally essential genes in in vitro biofilms aerobically and anaerobically. Using transposon insertion sequencing (TnSeq) with a highly saturated mariner transposon library in two strains, the ATCC33392 type-strain (Hp 392) and oral isolate EL1 (Hp EL1), we show that the essential genomes of Hp 392 and Hp EL1 are composed of 395 (20%) and 384 (19%) genes, respectively. The core essential genome, consisting of 341 (17%) essential genes conserved between both strains, was composed of genes associated with genetic information processing, carbohydrate, protein, and energy metabolism. We also identified conditionally essential genes for aerobic and anaerobic biofilm growth, which were associated with carbohydrate and energy metabolism in both strains. RNAseq analysis determined that most genes upregulated during anaerobic growth are not essential for Hp 392 anaerobic survival. The completion of this library and analysis under these conditions gives us a foundational insight into the basic biology of H. parainfluenzae in differing oxygen conditions, similar to its in vivo habitat. This library presents a valuable tool for investigation into conditionally essential genes for an organism that lives in close contact with many microbial species in the human oral habitat.IMPORTANCEHaemophilus parainfluenzae is a highly abundant human commensal microbe, present in most healthy individuals where it colonizes the mouth. H. parainfluenzae correlates with good oral health and may play a role in preservation of healthy host status. Also, H. parainfluenzae can cause opportunistic infections outside of the oral cavity. To date, little is known about how H. parainfluenzae colonizes the human host, despite being such a frequent and abundant part of our human microbiome. Here, we demonstrate the creation and use of a powerful tool, a TnSeq library, used to identify genes necessary for both the outright growth of this organism and also genes conditionally essential for growth in varying oxygen status which it can encounter in the human host. This tool and these data serve as a foundation for further study of this relatively unknown organism that may play a role in preserving human health.


Asunto(s)
Biopelículas , Genes Esenciales , Haemophilus parainfluenzae , Biopelículas/crecimiento & desarrollo , Haemophilus parainfluenzae/genética , Genes Esenciales/genética , Humanos , Genoma Bacteriano/genética , Elementos Transponibles de ADN/genética , Viabilidad Microbiana/genética
3.
Microbiol Spectr ; 12(4): e0401723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488280

RESUMEN

Haemophilus and Aggregatibacter are two of the most common bacterial genera in the human oral cavity, encompassing both commensals and pathogens of substantial ecological and medical significance. In this study, we conducted a metapangenomic analysis of oral Haemophilus and Aggregatibacter species to uncover genomic diversity, phylogenetic relationships, and habitat specialization within the human oral cavity. Using three metrics-pangenomic gene content, phylogenomics, and average nucleotide identity (ANI)-we first identified distinct species and sub-species groups among these genera. Mapping of metagenomic reads then revealed clear patterns of habitat specialization, such as Aggregatibacter species predominantly in dental plaque, a distinctive Haemophilus parainfluenzae sub-species group on the tongue dorsum, and H. sp. HMT-036 predominantly in keratinized gingiva and buccal mucosa. In addition, we found that supragingival plaque samples contained predominantly only one out of the three taxa, H. parainfluenzae, Aggregatibacter aphrophilus, and A. sp. HMT-458, suggesting independent niches or a competitive relationship. Functional analyses revealed the presence of key metabolic genes, such as oxaloacetate decarboxylase, correlated with habitat specialization, suggesting metabolic versatility as a driving force. Additionally, heme synthesis distinguishes H. sp. HMT-036 from closely related Haemophilus haemolyticus, suggesting that the availability of micronutrients, particularly iron, was important in the evolutionary ecology of these species. Overall, our study exemplifies the power of metapangenomics to identify factors that may affect ecological interactions within microbial communities, including genomic diversity, habitat specialization, and metabolic versatility. IMPORTANCE: Understanding the microbial ecology of the mouth is essential for comprehending human physiology. This study employs metapangenomics to reveal that various Haemophilus and Aggregatibacter species exhibit distinct ecological preferences within the oral cavity of healthy individuals, thereby supporting the site-specialist hypothesis. Additionally, it was observed that the gene pool of different Haemophilus species correlates with their ecological niches. These findings shed light on the significance of key metabolic functions in shaping microbial distribution patterns and interspecies interactions in the oral ecosystem.


Asunto(s)
Ecosistema , Haemophilus , Humanos , Aggregatibacter/fisiología , Filogenia , Haemophilus/genética , Boca
4.
Nat Rev Microbiol ; 22(2): 89-104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37700024

RESUMEN

The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.


Asunto(s)
Microbiota , Virus , Humanos , Boca/microbiología , Bacterias/genética , Archaea
5.
Microbiome ; 11(1): 161, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491415

RESUMEN

BACKGROUND: Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression. One of the key forces often shaping strain-level diversity in microbial communities is infection of bacteria by their viral (phage) predators and symbionts. Surprisingly, although Pg has been the subject of study for over 40 years, essentially nothing is known of its phages, and the prevailing paradigm is that phages are not important in the ecology of Pg. RESULTS: Here we systematically addressed the question of whether Pg are infected by phages-and we found that they are. We found that prophages are common in Pg, they are genomically diverse, and they encode genes that have the potential to alter Pg physiology and interactions. We found that phages represent unrecognized targets of the prevalent CRISPR-Cas defense systems in Pg, and that Pg strains encode numerous additional mechanistically diverse candidate anti-phage defense systems. We also found that phages and candidate anti-phage defense system elements together are major contributors to strain-level diversity and the species pangenome of this oral pathogen. Finally, we demonstrate that prophages harbored by a model Pg strain are active in culture, producing extracellular viral particles in broth cultures. CONCLUSION: This work definitively establishes that phages are a major unrecognized force shaping the ecology and intra-species strain-level diversity of the well-studied oral pathogen Pg. The foundational phage sequence datasets and model systems that we establish here add to the rich context of all that is already known about Pg, and point to numerous avenues of future inquiry that promise to shed new light on fundamental features of phage impacts on human health and disease broadly. Video Abstract.


Asunto(s)
Bacteriófagos , Enfermedades Periodontales , Humanos , Bacteriófagos/genética , Porphyromonas gingivalis/genética , Profagos/genética , Secuencia de Bases
6.
J Oral Microbiol ; 15(1): 2225261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361319

RESUMEN

Gemella species are core members of the human oral microbiome in healthy subjects and are regarded as commensals, although they can cause opportunistic infections. Our objective was to evaluate the site-specialization of Gemella species among various habitats within the mouth by combining pangenomics and metagenomics. With pangenomics, we identified genome relationships and categorized genes as core and accessory to each species. With metagenomics, we identified the primary oral habitat of individual genomes. Our results establish that the genomes of three species, G. haemolysans, G. sanguinis and G. morbillorum, are abundant and prevalent in human mouths at different oral sites: G. haemolysans on buccal mucosa and keratinized gingiva; G. sanguinis on tongue dorsum, throat, and tonsils; and G. morbillorum in dental plaque. The gene-level basis of site-specificity was investigated by identifying genes that were core to Gemella genomes at a specific oral site but absent from other Gemella genomes. The riboflavin biosynthesis pathway was present in G. haemolysans genomes associated with buccal mucosa but absent from the rest of the genomes. Overall, metapangenomics show that Gemella species have clear ecological preferences in the oral cavity of healthy humans and provides an approach to identifying gene-level drivers of site specificity.

7.
NPJ Biofilms Microbiomes ; 9(1): 11, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959210

RESUMEN

Human microbiome composition is closely tied to health, but how the host manages its microbial inhabitants remains unclear. One important, but understudied, factor is the natural host environment: mucus, which contains gel-forming glycoproteins (mucins) that display hundreds of glycan structures with potential regulatory function. Leveraging a tractable culture-based system to study how mucins influence oral microbial communities, we found that mucin glycans enable the coexistence of diverse microbes, while resisting disease-associated compositional shifts. Mucins from tissues with unique glycosylation differentially tuned microbial composition, as did isolated mucin glycan libraries, uncovering the importance of specific glycan patterns in microbiome modulation. We found that mucins shape microbial communities in several ways: serving as nutrients to support metabolic diversity, organizing spatial structure through reduced aggregation, and possibly limiting antagonism between competing taxa. Overall, this work identifies mucin glycans as a natural host mechanism and potential therapeutic intervention to maintain healthy microbial communities.


Asunto(s)
Microbiota , Mucinas , Humanos , Mucinas/química , Mucinas/metabolismo , Glicosilación , Moco/metabolismo , Polisacáridos/metabolismo
8.
Microbiol Spectr ; 11(1): e0404222, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36695592

RESUMEN

Veillonella species are abundant members of the human oral microbiome with multiple interspecies commensal relationships. Examining the distribution patterns of Veillonella species across the oral cavity is fundamental to understanding their oral ecology. In this study, we used a combination of pangenomic analysis and oral metagenomic information to clarify Veillonella taxonomy and to test the site specialist hypothesis for the Veillonella genus, which contends that most oral bacterial species are adapted to live at specific oral sites. Using isolate genome sequences combined with shotgun metagenomic sequence data, we showed that Veillonella species have clear, differential site specificity: Veillonella parvula showed strong preference for supra- and subgingival plaque, while closely related V. dispar, as well as more distantly related V. atypica, preferred the tongue dorsum, tonsils, throat, and hard palate. In addition, the provisionally named Veillonella sp. Human Microbial Taxon 780 showed strong site specificity for keratinized gingiva. Using comparative genomic analysis, we identified genes associated with thiamine biosynthesis and the reductive pentose phosphate cycle that may enable Veillonella species to occupy their respective habitats. IMPORTANCE Understanding the microbial ecology of the mouth is fundamental for understanding human physiology. In this study, metapangenomics demonstrated that different Veillonella species have clear ecological preferences in the oral cavity of healthy humans, validating the site specialist hypothesis. Furthermore, the gene pool of different Veillonella species was found to be reflective of their ecology, illuminating the potential role of vitamins and carbohydrates in determining Veillonella distribution patterns and interspecies interactions.


Asunto(s)
Microbiota , Veillonella , Humanos , Veillonella/genética , Boca/microbiología , Lengua/microbiología , Tonsila Palatina
9.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36413219

RESUMEN

Intelectin-1 (ITLN1) is a lectin secreted by intestinal epithelial cells (IECs) and upregulated in human ulcerative colitis (UC). We investigated how ITLN1 production is regulated in IECs and the biological effects of ITLN1 at the host-microbiota interface using mouse models. Our data show that ITLN1 upregulation in IECs from UC patients is a consequence of activating the unfolded protein response. Analysis of microbes coated by ITLN1 in vivo revealed a restricted subset of microorganisms, including the mucolytic bacterium Akkermansia muciniphila. Mice overexpressing intestinal ITLN1 exhibited decreased inner colonic mucus layer thickness and closer apposition of A. muciniphila to the epithelial cell surface, similar to alterations reported in UC. The changes in the inner mucus layer were microbiota and A. muciniphila dependent and associated with enhanced sensitivity to chemically induced and T cell-mediated colitis. We conclude that by determining the localization of a select group of bacteria to the mucus layer, ITLN1 modifies this critical barrier. Together, these findings may explain the impact of ITLN1 dysregulation on UC pathogenesis.


Asunto(s)
Colitis Ulcerosa , Verrucomicrobia , Humanos , Ratones , Animales , Verrucomicrobia/metabolismo , Moco/metabolismo , Lectinas , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología
10.
Microbiome ; 10(1): 145, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064650

RESUMEN

BACKGROUND: The human mouth is a natural laboratory for studying how bacterial communities differ across habitats. Different bacteria colonize different surfaces in the mouth-teeth, tongue dorsum, and keratinized and non-keratinized epithelia-despite the short physical distance between these habitats and their connection through saliva. We sought to determine whether more tightly defined microhabitats might have more tightly defined sets of resident bacteria. A microhabitat may be characterized, for example, as the space adjacent to a particular species of bacterium. Corncob structures of dental plaque, consisting of coccoid bacteria bound to filaments of Corynebacterium cells, present an opportunity to analyze the community structure of one such well-defined microhabitat within a complex natural biofilm. Here, we investigate by fluorescence in situ hybridization and spectral imaging the composition of the cocci decorating the filaments. RESULTS: The range of taxa observed in corncobs was limited to a small subset of the taxa present in dental plaque. Among four major groups of dental plaque streptococci, two were the major constituents of corncobs, including one that was the most abundant Streptococcus species in corncobs despite being relatively rare in dental plaque overall. Images showed both Streptococcus types in corncobs in all individual donors, suggesting that the taxa have different ecological roles or that mechanisms exist for stabilizing the persistence of functionally redundant taxa in the population. Direct taxon-taxon interactions were observed not only between the Streptococcus cells and the central corncob filament but also between Streptococcus cells and the limited subset of other plaque bacteria detected in the corncobs, indicating species ensembles involving these taxa as well. CONCLUSIONS: The spatial organization we observed in corncobs suggests that each of the microbial participants can interact with multiple, albeit limited, potential partners, a feature that may encourage the long-term stability of the community. Additionally, our results suggest the general principle that a precisely defined microhabitat will be inhabited by a small and well-defined set of microbial taxa. Thus, our results are important for understanding the structure and organizing principles of natural biofilms and lay the groundwork for future work to modulate and control biofilms for human health. Video Abstract.


Asunto(s)
Placa Dental , Zea mays , Bacterias/genética , Biopelículas , Humanos , Hibridación Fluorescente in Situ/métodos , Boca/microbiología , Streptococcus
11.
Mol Oral Microbiol ; 37(6): 229-243, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36073311

RESUMEN

A detailed understanding of where bacteria localize is necessary to advance microbial ecology and microbiome-based therapeutics. The site-specialist hypothesis predicts that most microbes in the human oral cavity have a primary habitat type within the mouth where they are most abundant. We asked whether this hypothesis accurately describes the distribution of the members of the genus Streptococcus, a clinically relevant taxon that dominates most oral sites. Prior analysis of 16S rRNA gene sequencing data indicated that some oral Streptococcus clades are site-specialists while others may be generalists. However, within complex microbial populations composed of numerous closely related species and strains, such as the oral streptococci, genome-scale analysis is necessary to provide the resolution to discriminate closely related taxa with distinct functional roles. Here, we assess whether individual species within this genus are specialists using publicly available genomic sequence data that provide species-level resolution. We chose a set of high-quality representative genomes for human oral Streptococcus species. Onto these genomes, we mapped shotgun metagenomic sequencing reads from supragingival plaque, tongue dorsum, and other sites in the oral cavity. We found that every abundant Streptococcus species in the healthy human oral cavity showed strong site-tropism and that even closely related species such as S. mitis, S. oralis, and S. infantis specialized in different sites. These findings indicate that closely related bacteria can have distinct habitat distributions in the absence of dispersal limitation and under similar environmental conditions and immune regimes. Substantial overlap between the core genes of these three species suggests that site-specialization is determined by subtle differences in genomic content.


Asunto(s)
Microbiota , Streptococcus , Humanos , ARN Ribosómico 16S/genética , Streptococcus/genética , Microbiota/genética , Metagenoma , Bacterias/genética , Boca/microbiología , Tropismo , Filogenia
12.
Microbiome ; 10(1): 52, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331334

RESUMEN

BACKGROUND: Elucidating the spatial structure of host-associated microbial communities is essential for understanding taxon-taxon interactions within the microbiota and between microbiota and host. Macroalgae are colonized by complex microbial communities, suggesting intimate symbioses that likely play key roles in both macroalgal and bacterial biology, yet little is known about the spatial organization of microbes associated with macroalgae. Canopy-forming kelp are ecologically significant, fixing teragrams of carbon per year in coastal kelp forest ecosystems. We characterized the micron-scale spatial organization of bacterial communities on blades of the kelp Nereocystis luetkeana using fluorescence in situ hybridization and spectral imaging with a probe set combining phylum-, class-, and genus-level probes to localize and identify > 90% of the microbial community. RESULTS: We show that kelp blades host a dense microbial biofilm composed of disparate microbial taxa in close contact with one another. The biofilm is spatially differentiated, with clustered cells of the dominant symbiont Granulosicoccus sp. (Gammaproteobacteria) close to the kelp surface and filamentous Bacteroidetes and Alphaproteobacteria relatively more abundant near the biofilm-seawater interface. A community rich in Bacteroidetes colonized the interior of kelp tissues. Microbial cell density increased markedly along the length of the kelp blade, from sparse microbial colonization of newly produced tissues at the meristematic base of the blade to an abundant microbial biofilm on older tissues at the blade tip. Kelp from a declining population hosted fewer microbial cells compared to kelp from a stable population. CONCLUSIONS: Imaging revealed close association, at micrometer scales, of different microbial taxa with one another and with the host. This spatial organization creates the conditions necessary for metabolic exchange among microbes and between host and microbiota, such as provisioning of organic carbon to the microbiota and impacts of microbial nitrogen metabolisms on host kelp. The biofilm coating the surface of the kelp blade is well-positioned to mediate interactions between the host and surrounding organisms and to modulate the chemistry of the surrounding water column. The high density of microbial cells on kelp blades (105-107 cells/cm2), combined with the immense surface area of kelp forests, indicates that biogeochemical functions of the kelp microbiome may play an important role in coastal ecosystems. Video abstract.


Asunto(s)
Kelp , Microbiota , Bacterias/genética , Bacteroidetes , Carbono , Hibridación Fluorescente in Situ , Agua de Mar
13.
ISME J ; 16(4): 948-957, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34732850

RESUMEN

Complex polymicrobial biofilm communities are abundant in nature particularly in the human oral cavity where their composition and fitness can affect health. While the study of these communities during disease is essential and prevalent, little is known about interactions within the healthy plaque community. Here we describe interactions between two of the most abundant species in this healthy microbiome, Haemophilus parainfluenzae and Streptococcus mitis. We discovered that H. parainfluenzae typically exists adjacent to mitis group streptococci in vivo with which it is also positively correlated based on microbiome data. By comparing in vitro coculture data to ex vivo microscopy we revealed that this co-occurrence is density dependent and further influenced by H2O2 production. We discovered that H. parainfluenzae utilizes a more redundant, multifactorial response to H2O2 than related microorganisms and that this system's integrity enhances streptococcal fitness. Our results indicate that mitis group streptococci are likely the in vivo source of NAD for H. parainfluenzae and also evoke patterns of carbon utilization in vitro for H. parainfluenzae similar to those observed in vivo. Our findings describe mechanistic interactions between two of the most abundant and prevalent members of healthy supragingival plaque that contribute to their in vivo survival.


Asunto(s)
Peróxido de Hidrógeno , Microbiota , Bacterias/genética , Biopelículas , Humanos , Streptococcus/genética
14.
Genome Biol ; 21(1): 292, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33323122

RESUMEN

INTRODUCTION: Microbial residents of the human oral cavity have long been a major focus of microbiology due to their influence on host health and intriguing patterns of site specificity amidst the lack of dispersal limitation. However, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among taxa that belong to recently discovered branches of microbial life. RESULTS: Here, we assemble metagenomes from tongue and dental plaque samples from multiple individuals and reconstruct 790 non-redundant genomes, 43 of which resolve to TM7, a member of the Candidate Phyla Radiation, forming six monophyletic clades that distinctly associate with either plaque or tongue. Both pangenomic and phylogenomic analyses group tongue-specific clades with other host-associated TM7 genomes. In contrast, plaque-specific TM7 group with environmental TM7 genomes. Besides offering deeper insights into the ecology, evolution, and mobilome of cryptic members of the oral microbiome, our study reveals an intriguing resemblance between dental plaque and non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a stepping stone for environmental microbes to adapt to host environments for some clades of microbes. Additionally, we report that prophages are widespread among oral-associated TM7, while absent from environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host environment. CONCLUSIONS: Our data illuminate niche partitioning of enigmatic members of the oral cavity, including TM7, SR1, and GN02, and provide genomes for poorly characterized yet prevalent members of this biome, such as uncultivated Flavobacteriaceae.


Asunto(s)
Marcadores Genéticos , Metagenoma , Microbiota/genética , Boca/microbiología , Adaptación Fisiológica , Adulto , Bacterias/genética , Femenino , Genoma Bacteriano , Humanos , Secuencias Repetitivas Esparcidas , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , ARN Ribosómico 16S
15.
Genome Biol ; 21(1): 293, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33323129

RESUMEN

BACKGROUND: The increasing availability of microbial genomes and environmental shotgun metagenomes provides unprecedented access to the genomic differences within related bacteria. The human oral microbiome with its diverse habitats and abundant, relatively well-characterized microbial inhabitants presents an opportunity to investigate bacterial population structures at an ecosystem scale. RESULTS: Here, we employ a metapangenomic approach that combines public genomes with Human Microbiome Project (HMP) metagenomes to study the diversity of microbial residents of three oral habitats: tongue dorsum, buccal mucosa, and supragingival plaque. For two exemplar taxa, Haemophilus parainfluenzae and the genus Rothia, metapangenomes reveal distinct genomic groups based on shared genome content. H. parainfluenzae genomes separate into three distinct subgroups with differential abundance between oral habitats. Functional enrichment analyses identify an operon encoding oxaloacetate decarboxylase as diagnostic for the tongue-abundant subgroup. For the genus Rothia, grouping by shared genome content recapitulates species-level taxonomy and habitat preferences. However, while most R. mucilaginosa are restricted to the tongue as expected, two genomes represent a cryptic population of R. mucilaginosa in many buccal mucosa samples. For both H. parainfluenzae and the genus Rothia, we identify not only limitations in the ability of cultivated organisms to represent populations in their native environment, but also specifically which cultivar gene sequences are absent or ubiquitous. CONCLUSIONS: Our findings provide insights into population structure and biogeography in the mouth and form specific hypotheses about habitat adaptation. These results illustrate the power of combining metagenomes and pangenomes to investigate the ecology and evolution of bacteria across analytical scales.


Asunto(s)
Bacterias/genética , Metagenoma , Microbiota/genética , Boca/microbiología , Mapeo Cromosómico , Haemophilus parainfluenzae/genética , Humanos , Micrococcaceae/genética , ARN Ribosómico 16S/genética
16.
Cell Host Microbe ; 28(2): 160-168, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32791109

RESUMEN

The mouth presents a multiplicity of local environments in communication with one another via saliva. The spatial organization of microbes within the mouth is shaped by opposing forces in dynamic equilibrium-salivary flow and adhesion, shedding and colonization-and by interactions among and between microbes and the host. Here we review recent evidence confirming that oral microbes are specialized for individual habitats within the mouth and that microbial habitats and niches are defined by micron-scale gradients in combination with short- and long-range interactions. Micron-scale structure illuminates the roles of individual taxa and provides insight into their community ecology and potential pathogenicity.


Asunto(s)
Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Interacciones Microbiota-Huesped/fisiología , Boca/microbiología , Adhesión Bacteriana/fisiología , Ecosistema , Humanos , Saliva/fisiología
17.
Cell Rep ; 30(12): 4003-4015.e3, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209464

RESUMEN

A fundamental question in microbial ecology is how microbes are spatially organized with respect to each other and their host. A test bed for examining this question is the tongue dorsum, which harbors a complex and important microbial community. Here, we use multiplexed fluorescence spectral imaging to investigate the organization of the tongue microbiome at micron to hundred-micron scales. We design oligonucleotide probes for taxa both abundant and prevalent, as determined by sequence analysis. Imaging reveals a highly structured spatial organization of microbial consortia, ranging in linear dimension from tens to hundreds of microns. The consortia appear to develop from a core of epithelial cells, with taxa clustering in domains suggestive of clonal expansion. Quantitative proximity analysis provides the basis for a model of tongue dorsum microbiome organization and dynamics. Our work illustrates how high-resolution analysis of micron-scale organization provides insights into physiological functions and microbiome-host interactions.


Asunto(s)
Microbiota , Lengua/microbiología , Adulto , Anciano , Biopelículas , Ecosistema , Femenino , Humanos , Masculino , Consorcios Microbianos , Persona de Mediana Edad , Filogenia , Especificidad de la Especie , Adulto Joven
18.
Bioinformatics ; 36(3): 910-917, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504202

RESUMEN

MOTIVATION: Spectral unmixing methods attempt to determine the concentrations of different fluorophores present at each pixel location in an image by analyzing a set of measured emission spectra. Unmixing algorithms have shown great promise for applications where samples contain many fluorescent labels; however, existing methods perform poorly when confronted with autofluorescence-contaminated images. RESULTS: We propose an unmixing algorithm designed to separate fluorophores with overlapping emission spectra from contamination by autofluorescence and background fluorescence. First, we formally define a generalization of the linear mixing model, called the affine mixture model (AMM), that specifically accounts for background fluorescence. Second, we use the AMM to derive an affine nonnegative matrix factorization method for estimating fluorophore endmember spectra from reference images. Lastly, we propose a semi-blind sparse affine spectral unmixing (SSASU) algorithm that uses knowledge of the estimated endmembers to learn the autofluorescence and background fluorescence spectra on a per-image basis. When unmixing real-world spectral images contaminated by autofluorescence, SSASU greatly improved proportion indeterminacy as compared to existing methods for a given relative reconstruction error. AVAILABILITY AND IMPLEMENTATION: The source code used for this paper was written in Julia and is available with the test data at https://github.com/brossetti/ssasu.


Asunto(s)
Algoritmos , Colorantes Fluorescentes , Microscopía Fluorescente , Programas Informáticos
19.
Mol Ecol Resour ; 20(3): 620-634, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31782619

RESUMEN

Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the "Plastisphere"-the thin layer of life on the surface of PMD-has been technology-limited. Research into microbe-microbe and microbe-substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI-FISH (combinatorial labelling and spectral imaging - fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha-, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell-count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro-metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.


Asunto(s)
Microbiota/efectos de los fármacos , Plásticos/efectos adversos , Bacterias/efectos de los fármacos , Bacterias/genética , Eucariontes/efectos de los fármacos , Eucariontes/genética , Hibridación Fluorescente in Situ/métodos , Microbiota/genética , Microscopía/métodos , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química
20.
Annu Rev Microbiol ; 73: 335-358, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31180804

RESUMEN

Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.


Asunto(s)
Microbiota , Boca/microbiología , Humanos , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA