Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; PP2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146168

RESUMEN

Accelerated MRI protocols routinely involve a predefined sampling pattern that undersamples the k-space. Finding an optimal pattern can enhance the reconstruction quality, however this optimization is a challenging task. To address this challenge, we introduce a novel deep learning framework, AutoSamp, based on variational information maximization that enables joint optimization of sampling pattern and reconstruction of MRI scans. We represent the encoder as a non-uniform Fast Fourier Transform that allows continuous optimization of k-space sample locations on a non-Cartesian plane, and the decoder as a deep reconstruction network. Experiments on public 3D acquired MRI datasets show improved reconstruction quality of the proposed AutoSamp method over the prevailing variable density and variable density Poisson disc sampling for both compressed sensing and deep learning reconstructions. We demonstrate that our data-driven sampling optimization method achieves 4.4dB, 2.0dB, 0.75dB, 0.7dB PSNR improvements over reconstruction with Poisson Disc masks for acceleration factors of R = 5, 10, 15, 25, respectively. Prospectively accelerated acquisitions with 3D FSE sequences using our optimized sampling patterns exhibit improved image quality and sharpness. Furthermore, we analyze the characteristics of the learned sampling patterns with respect to changes in acceleration factor, measurement noise, underlying anatomy, and coil sensitivities. We show that all these factors contribute to the optimization result by affecting the sampling density, k-space coverage and point spread functions of the learned sampling patterns.

2.
IEEE Trans Med Imaging ; 40(1): 239-250, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956045

RESUMEN

Reliable MRI is crucial for accurate interpretation in therapeutic and diagnostic tasks. However, undersampling during MRI acquisition as well as the overparameterized and non-transparent nature of deep learning (DL) leaves substantial uncertainty about the accuracy of DL reconstruction. With this in mind, this study aims to quantify the uncertainty in image recovery with DL models. To this end, we first leverage variational autoencoders (VAEs) to develop a probabilistic reconstruction scheme that maps out (low-quality) short scans with aliasing artifacts to the diagnostic-quality ones. The VAE encodes the acquisition uncertainty in a latent code and naturally offers a posterior of the image from which one can generate pixel variance maps using Monte-Carlo sampling. Accurately predicting risk requires knowledge of the bias as well, for which we leverage Stein's Unbiased Risk Estimator (SURE) as a proxy for mean-squared-error (MSE). A range of empirical experiments is performed for Knee MRI reconstruction under different training losses (adversarial and pixel-wise) and unrolled recurrent network architectures. Our key observations indicate that: 1) adversarial losses introduce more uncertainty; and 2) recurrent unrolled nets reduce the prediction uncertainty and risk.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Método de Montecarlo , Incertidumbre
3.
IEEE Trans Med Imaging ; 40(1): 105-115, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32915728

RESUMEN

Lack of ground-truth MR images impedes the common supervised training of neural networks for image reconstruction. To cope with this challenge, this article leverages unpaired adversarial training for reconstruction networks, where the inputs are undersampled k-space and naively reconstructed images from one dataset, and the labels are high-quality images from another dataset. The reconstruction networks consist of a generator which suppresses the input image artifacts, and a discriminator using a pool of (unpaired) labels to adjust the reconstruction quality. The generator is an unrolled neural network - a cascade of convolutional and data consistency layers. The discriminator is also a multilayer CNN that plays the role of a critic scoring the quality of reconstructed images based on the Wasserstein distance. Our experiments with knee MRI datasets demonstrate that the proposed unpaired training enables diagnostic-quality reconstruction when high-quality image labels are not available for the input types of interest, or when the amount of labels is small. In addition, our adversarial training scheme can achieve better image quality (as rated by expert radiologists) compared with the paired training schemes with pixel-wise loss.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Imagen por Resonancia Magnética
4.
Proc IEEE Int Symp Biomed Imaging ; 2020: 1056-1059, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33282118

RESUMEN

Accelerating data acquisition in magnetic resonance imaging (MRI) has been of perennial interest due to its prohibitively slow data acquisition process. Recent trends in accelerating MRI employ data-centric deep learning frameworks due to its fast inference time and 'one-parameter-fit-all' principle unlike in traditional model-based acceleration techniques. Unrolled deep learning framework that combines the deep priors and model knowledge are robust compared to naive deep learning based framework. In this paper, we propose a novel multi-scale unrolled deep learning framework which learns deep image priors through multi-scale CNN and is combined with unrolled framework to enforce data-consistency and model knowledge. Essentially, this framework combines the best of both learning paradigms:model-based and data-centric learning paradigms. Proposed method is verified using several experiments on numerous data sets.

5.
IEEE Signal Process Mag ; 37(1): 111-127, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33192036

RESUMEN

Compressed sensing (CS) reconstruction methods leverage sparse structure in underlying signals to recover high-resolution images from highly undersampled measurements. When applied to magnetic resonance imaging (MRI), CS has the potential to dramatically shorten MRI scan times, increase diagnostic value, and improve overall patient experience. However, CS has several shortcomings which limit its clinical translation such as: 1) artifacts arising from inaccurate sparse modelling assumptions, 2) extensive parameter tuning required for each clinical application, and 3) clinically infeasible reconstruction times. Recently, CS has been extended to incorporate deep neural networks as a way of learning complex image priors from historical exam data. Commonly referred to as unrolled neural networks, these techniques have proven to be a compelling and practical approach to address the challenges of sparse CS. In this tutorial, we will review the classical compressed sensing formulation and outline steps needed to transform this formulation into a deep learning-based reconstruction framework. Supplementary open source code in Python will be used to demonstrate this approach with open databases. Further, we will discuss considerations in applying unrolled neural networks in the clinical setting.

6.
IEEE Trans Med Imaging ; 38(1): 167-179, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30040634

RESUMEN

Undersampled magnetic resonance image (MRI) reconstruction is typically an ill-posed linear inverse task. The time and resource intensive computations require tradeoffs between accuracy and speed. In addition, state-of-the-art compressed sensing (CS) analytics are not cognizant of the image diagnostic quality. To address these challenges, we propose a novel CS framework that uses generative adversarial networks (GAN) to model the (low-dimensional) manifold of high-quality MR images. Leveraging a mixture of least-squares (LS) GANs and pixel-wise l1/l2 cost, a deep residual network with skip connections is trained as the generator that learns to remove the aliasing artifacts by projecting onto the image manifold. The LSGAN learns the texture details, while the l1/l2 cost suppresses high-frequency noise. A discriminator network, which is a multilayer convolutional neural network (CNN), plays the role of a perceptual cost that is then jointly trained based on high-quality MR images to score the quality of retrieved images. In the operational phase, an initial aliased estimate (e.g., simply obtained by zero-filling) is propagated into the trained generator to output the desired reconstruction. This demands a very low computational overhead. Extensive evaluations are performed on a large contrast-enhanced MR dataset of pediatric patients. Images rated by expert radiologists corroborate that GANCS retrieves higher quality images with improved fine texture details compared with conventional Wavelet-based and dictionary-learning-based CS schemes as well as with deep-learning-based schemes using pixel-wise training. In addition, it offers reconstruction times of under a few milliseconds, which are two orders of magnitude faster than the current state-of-the-art CS-MRI schemes.


Asunto(s)
Compresión de Datos/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Glándulas Suprarrenales/diagnóstico por imagen , Algoritmos , Bases de Datos Factuales , Humanos , Rodilla/diagnóstico por imagen , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA