Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 11(1): 17-28, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15635723

RESUMEN

The Gly- and Arg-rich C-terminal region of human nucleolin is a 61-residue long domain involved in a number of protein-protein and protein-nucleic acid interactions. This domain contains 10 aDma residues in the form of aDma-GG repeats interspersed with Phe residues. The exact role of Arg dimethylation is not known, partly because of the lack of efficient synthetic methods. This work describes an effective synthetic strategy, generally applicable to long RGG peptides, based on side-chain protected aDma and backbone protected dipeptide Fmoc-Gly-(Dmob)Gly-OH. This strategy allowed us to synthesize both the unmodified (N61Arg) and the dimethylated (N61aDma) peptides with high yield ( approximately 26%) and purity. As detected by NMR spectroscopy, N61Arg does not possess any stable secondary or tertiary structure in solution and N(omega),N(omega)-dimethylation of the guanidino group does not alter the overall conformational propensity of this peptide. While both peptides bind single-stranded nucleic acids with similar affinities (K(d) = 1.5 x 10(-7) M), they exhibit a different behaviour in ssDNA affinity chromatography consistent with the difference in pK(a) values. It has been previously shown that N61Arg inhibits HIV infection at the stage of HIV attachment to cells. This study demonstrates that Arg-dimethylated C-terminal domain lacks any inhibition activity, raising the question of whether nucleolin expressed on the cell-surface is indeed dimethylated.


Asunto(s)
Arginina/análogos & derivados , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Antirretrovirales/farmacología , Arginina/química , Cromatografía Líquida de Alta Presión , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , VIH/efectos de los fármacos , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Metilación , Fosfoproteínas/síntesis química , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/síntesis química , Nucleolina
2.
Z Naturforsch C J Biosci ; 59(3-4): 276-80, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15241940

RESUMEN

Numerous pathological conditions are associated with specific changes in glycosylation. Recent studies clearly demonstrated a link between stress and the development and course of many diseases. Biochemical mechanisms that link stress and diseases are still not fully understood, but there are some indications that changes in glycosylation are involved in this process. Influence of acute and chronic psychological stress on protein sialylation as well as the activity of sialyltransferases, enzymes that synthesize sialoglycoproteins, has been studied on Fischer rats. Liver, spleen, kidney, skeletal muscle, heart, adrenal gland, serum, cerebellum, hippocampus, medulla oblongata and cortex have been analyzed. Statistically significant tissue- and type of stress-specific changes in total sialyltransferase (ST) activity were observed. Acute stress resulted in 39% increase of ST activity in liver and spleen, while at the same time there was 43% decrease in ST activity in cerebellum. In chronic stress, ST activity increased in spleen (93%) and decreased in liver (17%), cerebellum (38%) and hippocampus (64%). Western-blot analysis using Maackia amurensis and Sambucus nigra lectins did not reveal any difference in protein sialylation. The results of serum corticosterone analysis indicate that showed increase in acute stress and decrease in chronic stress are in good accordance with the hypothesis that corticosterone has a role in the regulation of liver ST activity.


Asunto(s)
Sialiltransferasas/metabolismo , Estrés Psicológico/enzimología , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Electrochoque , Riñón/enzimología , Hígado/enzimología , Masculino , Ácido N-Acetilneuramínico/metabolismo , Especificidad de Órganos , Ratas , Ratas Endogámicas F344 , Bazo/enzimología
3.
J Mol Biol ; 332(1): 99-109, 2003 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-12946350

RESUMEN

Methyltransferases (MTases) from the Erm family catalyze S-adenosyl-L-methionine-dependent modification of a specific adenine residue in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B antibiotics. Despite the available structural data and functional analyses on the level of the RNA substrate, still very little is known about the mechanism of rRNA:adenine-N(6) methylation. Only predictions regarding various aspects of this reaction have been made based on the analysis of the crystal structures of methyltransferase ErmC' (without the RNA) and their comparison with the crystallographic and biochemical data for better studied DNA:m(6)A MTases. To validate the structure-based predictions of presumably essential residues in the catalytic pocket of ErmC', we carried out the site-directed mutagenesis and studied the function of the mutants in vitro and in vivo. Our results indicate that the active site of rRNA:m(6)A MTases is much more tolerant to amino acid substitutions than the active site of DNA:m(6)A MTases. Only the Y104 residue implicated in stabilization of the target base was found to be indispensable. Remarkably, the N101 residue from the "catalytic" motif IV and two conserved residues that form the floor (F163) and one of the walls (N11) of the base-binding site are not essential for catalysis in ErmC'. This somewhat surprising result is discussed in the light of the available structural data and in the phylogenetic context of the Erm family.


Asunto(s)
Aminoácidos/química , Metiltransferasas/genética , Estructura Terciaria de Proteína , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Farmacorresistencia Microbiana , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , ARN/metabolismo , Alineación de Secuencia
4.
Nucleic Acids Res ; 31(16): 4941-9, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907737

RESUMEN

The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family.


Asunto(s)
Alanina/genética , Metiltransferasas/metabolismo , ARN Ribosómico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , División Celular/efectos de los fármacos , División Celular/genética , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Cinética , Metiltransferasas/química , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA