Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2408324121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288173

RESUMEN

Myasthenia gravis (MG) is a chronic and severe disease of the skeletal neuromuscular junction (NMJ) in which the effects of neurotransmitters are attenuated, leading to muscle weakness. In the most common forms of autoimmune MG, antibodies attack components of the postsynaptic membrane, including the acetylcholine receptor (AChR) or muscle-specific kinase (MuSK). MuSK, a master regulator of NMJ development, associates with the low-density lipoprotein-related receptor 4 (Lrp4) to form the signaling receptor for neuronal Agrin, a nerve-derived synaptic organizer. Pathogenic antibodies to MuSK interfere with binding between MuSK and Lrp4, inhibiting the differentiation and maintenance of the NMJ. MuSK MG can be debilitating and refractory to treatments that are effective for AChR MG. We show here that recombinant antibodies, derived from MuSK MG patients, cause severe neuromuscular disease in mice. The disease can be prevented by a MuSK agonist antibody, presented either prophylactically or after disease onset. These findings suggest a therapeutic alternative to generalized immunosuppression for treating MuSK MG by selectively and directly targeting the disease mechanism.


Asunto(s)
Miastenia Gravis , Unión Neuromuscular , Proteínas Tirosina Quinasas Receptoras , Receptores Colinérgicos , Animales , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ratones , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/inmunología , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo , Miastenia Gravis/inmunología , Miastenia Gravis/tratamiento farmacológico , Humanos , Proteínas Relacionadas con Receptor de LDL/inmunología , Autoanticuerpos/inmunología , Femenino , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Anticuerpos/inmunología , Anticuerpos/farmacología , Modelos Animales de Enfermedad , Ácidos Grasos Monoinsaturados
2.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229198

RESUMEN

To enhance early diagnosis and treatment of Alzheimer·s disease (AD), understanding the pathological changes before symptoms arise is crucial. The continuum model of AD suggest that Aß beta (Aß) accumulation precedes symptoms by at least 15 years, with vascular changes detectable around this time. Disturbances in capillary flow dynamics have been linked to reduced oxygen delivery to brain tissue, but evidence in presymptomatic AD remains elusive. We examined capillary flow dynamics in presymptomatic Tg-SwDI mice and the capacity of carbonic anhydrase inhibitors (CAIs) to prevent capillary flow disturbances. Our study revealed capillary flow disturbances associated with alterations in capillary morphology, adhesion molecule expression, and Aß load in cognitively normal 9-10-month-old Tg-SwDI mice. Treated mice showed ameliorated capillary flow disturbances, enhanced oxygen availability, and reduced Aß load. These findings underscore the importance of capillary flow disturbances in presymptomatic AD and highlight CAIs· potential for preserving vascular integrity in early AD.

3.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131293

RESUMEN

Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.

4.
Nature ; 626(7998): 347-356, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267576

RESUMEN

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Asunto(s)
Agresión , Reacción de Prevención , Hipotálamo , Vías Nerviosas , Neuronas , Oxitocina , Aprendizaje Social , Animales , Ratones , Agresión/fisiología , Reacción de Prevención/fisiología , Señales (Psicología) , Miedo/fisiología , Hipotálamo/citología , Hipotálamo/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Conducta Social , Aprendizaje Social/fisiología , Núcleo Supraóptico/citología , Núcleo Supraóptico/metabolismo , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo , Plasticidad Neuronal
5.
Alzheimers Dement ; 19(11): 5048-5073, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186121

RESUMEN

INTRODUCTION: Cerebrovascular pathology is an early and causal hallmark of Alzheimer's disease (AD), in need of effective therapies. METHODS: Based on the success of our previous in vitro studies, we tested for the first time in a model of AD and cerebral amyloid angiopathy (CAA), the carbonic anhydrase inhibitors (CAIs) methazolamide and acetazolamide, Food and Drug Administration-approved against glaucoma and high-altitude sickness. RESULTS: Both CAIs reduced cerebral, vascular, and glial amyloid beta (Aß) accumulation and caspase activation, diminished gliosis, and ameliorated cognition in TgSwDI mice. The CAIs also improved microvascular fitness and induced protective glial pro-clearance pathways, resulting in the reduction of Aß deposition. Notably, we unveiled that the mitochondrial carbonic anhydrase-VB (CA-VB) is upregulated in TgSwDI brains, CAA and AD+CAA human subjects, and in endothelial cells upon Aß treatment. Strikingly, CA-VB silencing specifically reduces Aß-mediated endothelial apoptosis. DISCUSSION: This work substantiates the potential application of CAIs in clinical trials for AD and CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Estados Unidos , Humanos , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Angiopatía Amiloide Cerebral/tratamiento farmacológico , Angiopatía Amiloide Cerebral/patología , Enfermedad de Alzheimer/patología , Cognición
6.
J Neurosci ; 42(23): 4725-4736, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577554

RESUMEN

Physical exercise improves motor performance in individuals with Parkinson's disease and elevates mood in those with depression. Although underlying factors have not been identified, clues arise from previous studies showing a link between cognitive benefits of exercise and increases in brain-derived neurotrophic factor (BDNF). Here, we investigated the influence of voluntary wheel-running exercise on BDNF levels in the striatum of young male wild-type (WT) mice, and on the striatal release of a key motor-system transmitter, dopamine (DA). Mice were allowed unlimited access to a freely rotating wheel (runners) or a locked wheel (controls) for 30 d. Electrically evoked DA release was quantified in ex vivo corticostriatal slices from these animals using fast-scan cyclic voltammetry. We found that exercise increased BDNF levels in dorsal striatum (dStr) and increased DA release in dStr and in nucleus accumbens core and shell. Increased DA release was independent of striatal acetylcholine (ACh), and persisted after a week of rest. We tested a role for BDNF in the influence of exercise on DA release using mice that were heterozygous for BDNF deletion (BDNF+/-). In contrast to WT mice, evoked DA release did not differ between BDNF+/- runners and controls. Complementary pharmacological studies using a tropomyosin receptor kinase B (TrkB) agonist in WT mouse slices showed that TrkB receptor activation also increased evoked DA release throughout striatum in an ACh-independent manner. Together, these data support a causal role for BDNF in exercise-enhanced striatal DA release and provide mechanistic insight into the beneficial effects of exercise in neuropsychiatric disorders, including Parkinson's, depression, and anxiety.SIGNIFICANCE STATEMENT Exercise has been shown to improve movement and cognition in humans and rodents. Here, we report that voluntary exercise for 30 d leads to an increase in evoked DA release throughout the striatum and an increase in BDNF in the dorsal (motor) striatum. The increase in DA release appears to require BDNF, indicated by the absence of DA release enhancement with running in BDNF+/- mice. Activation of BDNF receptors using a pharmacological agonist was also shown to boost DA release. Together, these data support a necessary and sufficient role for BDNF in exercise-enhanced DA release and provide mechanistic insight into the reported benefits of exercise in individuals with dopamine-linked neuropsychiatric disorders, including Parkinson's disease and depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dopamina , Enfermedad de Parkinson , Acetilcolina/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Cuerpo Estriado , Dopamina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens
7.
Int J Innov Res Med Sci ; 7(6): 254-271, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37841504

RESUMEN

Background: Preclinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis, has a wide range of reported pharmacological effects such as analgesic and anxiolytic actions; however, the exact mechanisms of action for these effects have not been examined in chronic osteoarthritis (OA). Similar to other chronic pain syndromes, OA pain can have a significant affective component characterized by mood changes. Serotonin (5-HT) is a neurotransmitter implicated in pain, depression, and anxiety. Pain is often in comorbidity with mood and anxiety disorders in patients with OA. Since primary actions of CBD are analgesic and anxiolytic, in this first in vivo positron emission tomography (PET) imaging study, we investigate the interaction of CBD with serotonin 5-HT1A receptor via a combination of in vivo neuroimaging and behavioral studies in a well-validated OA animal model. Methods: The first aim of this study was to evaluate the target involvement, including the evaluation of modulation by acute administration of CBD, or a specific target antagonist/agonist intervention, in control animals. The brain 5-HT1A activity/availability was assessed via in vivo dynamic PET imaging (up to 60 min) using a selective 5-HT1A radioligand ([18F]MeFWAY). Tracer bindings of 17 ROIs were evaluated based on averaged SUVR values over the last 10 min using CB as the reference region. We subsequently examined the neurochemical and behavioral alterations in OA animals (induction with monosodium iodoacetate (MIA) injection), as compared to control animals, via neuroimaging and behavioral assessment. Further, we examined the effects of repeated low-dose CBD treatment on mechanical allodynia (von Frey tests) and anxiety-like (light/dark box tests, L/D), depressive-like (forced swim tests, FST) behaviors in OA animals, as compared to after vehicle treatment. Results: The tracer binding was significantly reduced in control animals after an acute dose of CBD administered intravenously (1.0 mg/kg, i.v.), as compared to that for baseline. This binding specificity to 5-HT1A was further confirmed by a similar reduction of tracer binding when a specific 5-HT1A antagonist WAY1006235 was used (0.3 mg/kg, i.v.). Mice subjected to the MIA-induced OA for 13-20 days showed a decreased 5-HT1A tracer binding (25% to 41%), consistent with the notion that 5-HT1A plays a role in the modulation of pain in OA. Repeated treatment with CBD administered subcutaneously (5 mg/kg/day, s.c., for 16 days after OA induction) increased 5-HT1A tracer binding, while no significant improvement was observed after vehicle. A trend of increased anxiety or depressive-like behavior in the light/dark box or forced swim tests after OA induction, and a decrease in those behaviors after repeated low-dose CBD treatment, are consistent with the anxiolytic action of CBD through 5HT1A receptor activation. There appeared to be a sex difference: females seem to be less responsive at the baseline towards pain stimuli, while being more sensitive to CBD treatment. Conclusion: This first in vivo PET imaging study in an OA animal model has provided evidence for the interaction of CBD with the serotonin 5-HT1A receptor. Behavioral studies with more pharmacological interventions to support the target involvement are needed to further confirm these critical findings.

8.
Nature ; 596(7873): 553-557, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34381215

RESUMEN

Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.


Asunto(s)
Aprendizaje , Conducta Materna/psicología , Madres/psicología , Neuronas/metabolismo , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Abstinencia Sexual/psicología , Enseñanza , Animales , Femenino , Vivienda para Animales , Tamaño de la Camada , Ratones , Comportamiento de Nidificación , Plasticidad Neuronal
9.
Commun Biol ; 4(1): 420, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772096

RESUMEN

Atherosclerosis and obesity share pathological features including inflammation mediated by innate and adaptive immune cells. LXRα plays a central role in the transcription of inflammatory and metabolic genes. LXRα is modulated by phosphorylation at serine 196 (LXRα pS196), however, the consequences of LXRα pS196 in hematopoietic cell precursors in atherosclerosis and obesity have not been investigated. To assess the importance of LXRα phosphorylation, bone marrow from LXRα WT and S196A mice was transplanted into Ldlr-/- mice, which were fed a western diet prior to evaluation of atherosclerosis and obesity. Plaques from S196A mice showed reduced inflammatory monocyte recruitment, lipid accumulation, and macrophage proliferation. Expression profiling of CD68+ and T cells from S196A mouse plaques revealed downregulation of pro-inflammatory genes and in the case of CD68+ upregulation of mitochondrial genes characteristic of anti-inflammatory macrophages. Furthermore, S196A mice had lower body weight and less visceral adipose tissue; this was associated with transcriptional reprograming of the adipose tissue macrophages and T cells, and resolution of inflammation resulting in less fat accumulation within adipocytes. Thus, reducing LXRα pS196 in hematopoietic cells attenuates atherosclerosis and obesity by reprogramming the transcriptional activity of LXRα in macrophages and T cells to promote an anti-inflammatory phenotype.


Asunto(s)
Aterosclerosis/genética , Células Madre Hematopoyéticas/inmunología , Inflamación/genética , Receptores X del Hígado/genética , Obesidad/genética , Animales , Aterosclerosis/inmunología , Trasplante de Células Madre Hematopoyéticas , Inflamación/inmunología , Receptores X del Hígado/metabolismo , Masculino , Ratones , Obesidad/inmunología , Fosforilación
11.
Sci Rep ; 10(1): 6684, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317713

RESUMEN

Impulsivity describes the tendency to act prematurely without appropriate foresight and is symptomatic of a number of neuropsychiatric disorders. Although a number of genes for impulsivity have been identified, no study to date has carried out an unbiased, genome-wide approach to identify genetic markers associated with impulsivity in experimental animals. Herein we report a linkage study of a six-generational pedigree of adult rats phenotyped for one dimension of impulsivity, namely premature responding on the five-choice serial reaction time task, combined with genome wide sequencing and transcriptome analysis to identify candidate genes associated with the expression of the impulsivity trait. Premature responding was found to be heritable (h2 = 13-16%), with significant linkage (LOD 5.2) identified on chromosome 1. Fine mapping of this locus identified a number of polymorphic candidate genes, however only one, beta haemoglobin, was differentially expressed in both the founder strain and F6 generation. These findings provide novel insights into the genetic substrates and putative neurobiological mechanisms of impulsivity with broader translational relevance for impulsivity-related disorders in humans.


Asunto(s)
Cromosomas de los Mamíferos/genética , Conducta Impulsiva/fisiología , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Animales , Femenino , Regulación de la Expresión Génica , Ligamiento Genético , Genoma , Masculino , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Análisis y Desempeño de Tareas
12.
Psychopharmacology (Berl) ; 236(8): 2307-2323, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31218428

RESUMEN

RATIONALE: Dopamine D2-like receptors (D2R) are important drug targets in schizophrenia and Parkinson's disease, but D2R ligands also cause cognitive inflexibility such as poor reversal learning. The specific role of D2R in reversal learning remains unclear. OBJECTIVES: We tested the hypotheses that D2R agonism impairs reversal learning by blocking negative feedback and that antagonism of D1-like receptors (D1R) impairs learning from positive feedback. METHODS: Male Lister Hooded rats were trained on a novel visual reversal learning task. Performance on "probe trials", during which the correct or incorrect stimulus was presented with a third, probabilistically rewarded (50% of trials) and therefore intermediate stimulus, revealed individual learning curves for the processes of positive and negative feedback. The effects of D2R and D1R agonists and antagonists were evaluated. A separate cohort was tested on a spatial probabilistic reversal learning (PRL) task after D2R agonism. Computational reinforcement learning modelling was applied to choice data from the PRL task to evaluate the contribution of latent factors. RESULTS: D2R agonism with quinpirole dose-dependently impaired both visual reversal and PRL. Analysis of the probe trials on the visual task revealed a complete blockade of learning from negative feedback at the 0.25 mg/kg dose, while learning from positive feedback was intact. Estimated parameters from the model that best described the PRL choice data revealed a steep and selective decrease in learning rate from losses. D1R antagonism had a transient effect on the positive probe trials. CONCLUSIONS: D2R stimulation impairs reversal learning by blocking the impact of negative feedback.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Estimulación Luminosa/métodos , Receptores de Dopamina D2/metabolismo , Aprendizaje Inverso/fisiología , Percepción Espacial/fisiología , Animales , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Masculino , Ratas , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Aprendizaje Inverso/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología
13.
Front Aging Neurosci ; 11: 377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31992982

RESUMEN

Programmed cell death protein 1 (PD-1) checkpoint blockade with an antibody has been shown to reduce amyloid-ß plaques, associated pathologies and cognitive impairment in mouse models. More recently, this approach has shown effectiveness in a tauopathy mouse model to improve cognition and reduce tau lesions. Follow-up studies by other laboratories did not see similar benefits of this type of therapy in other amyloid-ß plaque models. Here, we report a modest increase in locomotor activity but no effect on cognition or tau pathology, in a different more commonly used tauopathy model following a weekly treatment for 12 weeks with the same PD-1 antibody and isotype control as in the original Aß- and tau-targeting studies. These findings indicate that further research is needed before clinical trials based on PD-1 checkpoint immune blockage are devised for tauopathies.

14.
Transl Psychiatry ; 8(1): 247, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429456

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) confers high risk of neurodevelopmental disorders such as schizophrenia and attention-deficit hyperactivity disorder. These disorders are associated with attentional impairment, the remediation of which is important for successful therapeutic intervention. We assessed a 22q11.2DS mouse model (Df(h22q11)/+) on a touchscreen rodent continuous performance test (rCPT) of attention and executive function that is analogous to human CPT procedures. Relative to wild-type littermates, Df(h22q11)/+ male mice showed impaired attentional performance as shown by decreased correct response ratio (hit rate) and a reduced ability to discriminate target stimuli from non-target stimuli (discrimination sensitivity, or d'). The Df(h22q11)/+ model exhibited decreased prefrontal cortical-hippocampal oscillatory synchrony within multiple frequency ranges during quiet wakefulness, which may represent a biomarker of cognitive dysfunction. The stimulant amphetamine (0-1.0 mg/kg, i.p.) dose-dependently improved d' in Df(h22q11)/+ mice whereas the highest dose of modafinil (40 mg/kg, i.p.) exacerbated their d' impairment. This is the first report to directly implicate attentional impairment in a 22q11.2DS mouse model, mirroring a key endophenotype of the human disorder. The capacity of the rCPT to detect performance impairments in the 22q11.2DS mouse model, and improvement following psychostimulant-treatment, highlights the utility and translational potential of the Df(h22q11)/+ model and this automated behavioral procedure.


Asunto(s)
Atención/fisiología , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Disfunción Cognitiva/fisiopatología , Síndrome de DiGeorge/fisiopatología , Sincronización de Fase en Electroencefalografía/fisiología , Función Ejecutiva/fisiología , Hipocampo/fisiopatología , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Anfetamina/farmacología , Animales , Atención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/administración & dosificación , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Función Ejecutiva/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Modafinilo/farmacología , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos
15.
Artículo en Inglés | MEDLINE | ID: mdl-31168482

RESUMEN

Important tools in the study of prefrontal cortical-dependent executive functions are cross-species behavioural tasks with translational validity. A widely used test of executive function and attention in humans is the continuous performance task (CPT). Optimal performance in variations of this task is associated with activity along the medial wall of the prefrontal cortex, including the anterior cingulate cortex (ACC), for its essential components such as response control, target detection and processing of false alarm errors. We assess the validity of a recently developed rodent touchscreen continuous performance task (rCPT) that is analogous to typical human CPT procedures. Here we evaluate the performance of mice with quinolinic acid-induced lesions centred on the ACC in the rCPT following a range of task parameter manipulations designed to challenge attention and impulse control. Lesioned mice showed a disinhibited response profile expressed as a decreased response criterion and increased false alarm rates. ACC lesions also resulted in a milder increase in inter-trial interval responses ('ITI touches') and hit rate. Lesions did not affect discriminative sensitivity d'. The disinhibited behaviour of ACC lesioned animals was stable and not affected by the manipulation of variable task parameter manipulations designed to increase task difficulty. The results are in general agreement with human studies implicating the ACC in the processing of inappropriate responses. We conclude that the rCPT may be useful for studying prefrontal cortex function in mice and has the capability of providing meaningful links between animal and human cognitive tasks.

16.
Psychopharmacology (Berl) ; 234(19): 2837-2857, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28744563

RESUMEN

RATIONALE: Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES: We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS: MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS: Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 µg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION: The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.


Asunto(s)
Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Acetato de Metilazoximetanol/toxicidad , Nootrópicos/uso terapéutico , Desempeño Psicomotor/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Animales , Atención/efectos de los fármacos , Atención/fisiología , Cognición/fisiología , Función Ejecutiva/efectos de los fármacos , Masculino , Neurotoxinas/toxicidad , Nootrópicos/farmacología , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Esquizofrenia/inducido químicamente , Resultado del Tratamiento
18.
Psychopharmacology (Berl) ; 232(21-22): 3947-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26415954

RESUMEN

RATIONALE: Continuous performance tests (CPTs) are widely used to assess attentional processes in a variety of disorders including Alzheimer's disease and schizophrenia. Common human CPTs require discrimination of sequentially presented, visually patterned 'target' and 'non-target' stimuli at a single location. OBJECTIVES: The aims of this study were to evaluate the performance of three popular mouse strains on a novel rodent touchscreen test (rCPT) designed to be analogous to common human CPT variants and to investigate the effects of donepezil, a cholinesterase inhibitor and putative cognitive enhancer. METHODS: C57BL/6J, DBA/2J and CD1 mice (n = 15-16/strain) were trained to baseline performance using four rCPT training stages. Then, probe tests assessed the effects of parameter changes on task performance: stimulus size, duration, contrast, probability, inter-trial interval or inclusion of flanker distractors. rCPT performance was also evaluated following acute administration of donepezil (0-3 mg/kg, i.p.). RESULTS: C57BL/6J and DBA/2J mice showed similar acquisition rates and final baseline performance following rCPT training. On probe tests, rCPT performance of both strains was sensitive to alteration of visual and/or attentional demands (stimulus size, duration, contrast, rate, flanker distraction). Relative to C57BL/6J, DBA/2J mice exhibited (1) decreasing sensitivity (d') across the 45-min session, (2) reduced performance on probes where the appearance of stimuli or adjacent areas were changed (size, contrast, flanking distractors) and (3) larger dose- and stimulus duration-dependent changes in performance following donepezil administration. In contrast, CD1 mice failed to acquire rCPT (stage 3) and pairwise visual discrimination tasks. CONCLUSIONS: rCPT is a potentially useful translational tool for assessing attention in mice and for detecting the effects of nootropic drugs.


Asunto(s)
Atención/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Nootrópicos/farmacología , Desempeño Psicomotor/efectos de los fármacos , Animales , Inhibidores de la Colinesterasa/farmacología , Aprendizaje Discriminativo/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Donepezilo , Evaluación Preclínica de Medicamentos , Humanos , Indanos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Piperidinas/farmacología , Especificidad de la Especie , Percepción Visual/efectos de los fármacos
19.
Psychopharmacology (Berl) ; 232(21-22): 3935-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26173611

RESUMEN

RATIONALE: The hippocampus is implicated in many of the cognitive impairments observed in conditions such as Alzheimer's disease (AD) and schizophrenia (SCZ). Often, mice are the species of choice for models of these diseases and the study of the relationship between brain and behaviour more generally. Thus, automated and efficient hippocampal-sensitive cognitive tests for the mouse are important for developing therapeutic targets for these diseases, and understanding brain-behaviour relationships. One promising option is to adapt the touchscreen-based trial-unique nonmatching-to-location (TUNL) task that has been shown to be sensitive to hippocampal dysfunction in the rat. OBJECTIVES: This study aims to adapt the TUNL task for use in mice and to test for hippocampus-dependency of the task. METHODS: TUNL training protocols were altered such that C57BL/6 mice were able to acquire the task. Following acquisition, dysfunction of the dorsal hippocampus (dHp) was induced using a fibre-sparing excitotoxin, and the effects of manipulation of several task parameters were examined. RESULTS: Mice could acquire the TUNL task using training optimised for the mouse (experiments 1). TUNL was found to be sensitive to dHp dysfunction in the mouse (experiments 2, 3 and 4). In addition, we observed that performance of dHp dysfunction group was somewhat consistently lower when sample locations were presented in the centre of the screen. CONCLUSIONS: This study opens up the possibility of testing both mouse and rat models on this flexible and hippocampus-sensitive touchscreen task.


Asunto(s)
Cognición/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Hipocampo/efectos de los fármacos , Animales , Automatización , Conducta de Elección/efectos de los fármacos , Masculino , Meloxicam , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neurotoxinas/farmacología , Tiazinas/farmacología , Tiazoles/farmacología
20.
Curr Protoc Neurosci ; 70: 8.32.1-8.32.12, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559006

RESUMEN

This protocol details a free-operant avoidance paradigm that has been developed to evaluate the relative contribution of different sources of reinforcement of avoidance behavior that may play an important role in the development and maintenance of human anxiety disorders. The task enables the assessment of the effects of safety cues that signal a period free from danger on lever-press avoidance behavior. Avoidance behavior trained using this protocol has been shown to be sensitive to both behavioral and pharmacological manipulations and has been optimized so that it takes approximately 1 month for rats to perform at high levels of stable avoidance responding.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Operante/fisiología , Refuerzo en Psicología , Animales , Señales (Psicología) , Humanos , Ratas , Seguridad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA