Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 11(45): 27860-27867, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35480776

RESUMEN

Biomass-derived carbon materials have been widely researched due to their advantages such as low cost, environmental friendliness, readily available raw materials. Black fungus and Hericium erinaceus contain many kinds of amino acids. In this paper, unique O, N-codoped black fungus-derived activated carbons (FAC X ), and Hericium erinaceus-derived activated carbons (HAC X ) were prepared by KOH chemical activation under different temperatures without adding additional reagents containing nitrogen and oxygen functional groups, respectively. As electrode materials of symmetric supercapacitors, FAC2 and HAC2 calcined at 800 °C exhibited the highest specific capacitance of 209.3 F g-1 and 238.6 F g-1 at 1.0 A g-1 in the two-electrode configuration with 6.0 M KOH as the electrolyte, respectively. The X-ray photoelectron spectroscopy confirmed that the as-synthesized FAC X and HAC X contained small amounts of nitrogen and oxygen elements. Moreover, heteroatom-doped FAC2 and HAC2 electrode materials shown excellent rate performance (84.1% and 75.0% capacitance retention at 20 A g-1, respectively). By comparison, the oxygen-rich hierarchical porous carbon (HAC2) shows higher specific capacitance and energy density and longer cycling performance. Nevertheless, carbon-rich hierarchical porous carbon (FAC2) indicates excellent rate performance. Biomass-derived heteroatom self-doped porous carbons are expected to become ideal active materials for high performance supercapacitor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA