Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sustain Chem Eng ; 12(5): 1868-1883, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38333202

RESUMEN

Amid growing concerns about climate change and energy sustainability, the need to create potent catalysts for the sequestration and conversion of CO2 to value-added chemicals is more critical than ever. This work describes the successful synthesis and profound potential of high-performance nanofiber catalysts, integrating earth-abundant iron (Fe) and cobalt (Co) as well as their alloy counterpart, FeCo, achieved through electrospinning and judicious thermal treatments. Systematic characterization using an array of advanced techniques, including SEM, TGA-DSC, ICP-MS, XRF, EDS, FTIR-ATR, XRD, and Raman spectroscopy, confirmed the integration and homogeneous distribution of Fe/Co elements in nanofibers and provided insights into their catalytic nuance. Impressively, the bimetallic FeCo nanofiber catalyst, thermally treated at 1050 °C, set a benchmark with an unparalleled CO2 conversion rate of 46.47% at atmospheric pressure and a consistent performance over a 55 h testing period at 500 °C. Additionally, this catalyst exhibited prowess in producing high-value hydrocarbons, comprising 8.01% of total products and a significant 31.37% of C2+ species. Our work offers a comprehensive and layered understanding of nanofiber catalysts, delving into their transformations, compositions, and structures under different calcination temperatures. The central themes of metal-carbon interactions, the potential advantages of bimetallic synergies, and the importance of structural defects all converge to define the catalytic performance of these nanofibers. These revelations not only deepen our understanding but also set the stage for future endeavors in designing advanced nanofiber catalysts with bespoke properties tailored for specific applications.

2.
Materials (Basel) ; 13(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197551

RESUMEN

Ultra-High Performance Concrete (UHPC) has been a material of interest for retrofitting reinforced concrete elements because of its pioneer mechanical and material properties. Numerous experimental studies for retrofitting concrete structures have shown an improvement in durability performance and structural behaviour. However, conservative and sometimes erroneous estimates for bond strength are used for numerically calculating the strength of the composite members. In addition, different roughening methods have been used to improve the bond mechanism; however, there is a lack of numerical simulation for the force transfer mechanism between the concrete substrate and UHPC as a repair material. This paper presents an experimental and numerical programme designed to characterize the interfacial properties of concrete substrate and its effect on the bond strength between the two materials. The experimental programme evaluates the bond strength between the concrete substrates and UHPC with two different surface preparations while using bi-surface test and additional material tests, including cylinder and cube tests for compression property, direct tension test, and flexural test to complement UHPC tensile properties. Non-linear finite element analysis was conducted, which uses a numerical zero thickness volume model to define the interface bond instead of a traditional fixed contact model. The numerical results from the zero thickness volume model show good agreement with the experimental results with a reduction in error by 181% and 24% for smooth and rough interface surfaces if compared to the results from the model with a fixed contact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA