Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Med ; 13(17): e70210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39240189

RESUMEN

BACKGROUND: High-grade endometrial cancers (EAC) are aggressive tumors with a high risk of progression after treatment. As EAC may harbor mutations in the RAS/MAPK pathways, we evaluated the preclinical in vitro and in vivo efficacy of avutometinib, a RAF/MEK clamp, in combination with the focal adhesion kinase (FAK) inhibitors defactinib or VS-4718, against multiple primary EAC cell lines and xenografts. METHODS: Whole-exome sequencing (WES) was used to evaluate the genetic landscape of five primary EAC cell lines. The in vitro activity of avutometinib and defactinib as single agents and in combination was evaluated using cell viability, cell cycle, and cytotoxicity assays. Mechanistic studies were performed using Western blot assays while in vivo experiments were completed in UTE10 engrafted mice treated with either vehicle, avutometinib, VS-4718, or their combination through oral gavage. RESULTS: WES results demonstrated multiple EAC cell lines to harbor genetic derangements in the RAS/MAPK pathway including KRAS/PTEN/PIK3CA/BRAF/ARID1A, potentially sensitizing to FAK and RAF/MEK inhibition. Five out of five of the EAC cell lines demonstrated in vitro sensitivity to FAK and/or RAF/MEK inhibition. By Western blot assays, exposure of EAC cell lines to defactinib, avutometinib, and their combination demonstrated decreased phosphorylated FAK (p-FAK) as well as decreased p-MEK and p-ERK. In vivo the combination of avutometinib/VS-4718 demonstrated superior tumor growth inhibition compared to single-agent treatment and controls starting at Day 9 (p < 0.02 and p < 0.04) in UTE10 xenografts. CONCLUSIONS: Avutometinib, defactinib, and to a larger extent their combinations, demonstrated promising in vitro and in vivo activity against EAC cell lines and xenografts. These preclinical data support the potential clinical evaluation of this combination in high-grade EAC patients.


Asunto(s)
Neoplasias Endometriales , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Animales , Ratones , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Neoplasias Endometriales/genética , Línea Celular Tumoral , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Endometrioide/patología , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Secuenciación del Exoma , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Clasificación del Tumor , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Oxazepinas , Sulfonamidas , Pirazinas , Benzamidas , Imidazoles
2.
Microorganisms ; 11(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37374977

RESUMEN

Breast cancer is one of the leading causes of death in women worldwide. Recent studies have demonstrated that inflammation due to infections with microorganisms could play a role in breast cancer development. One of the known human pathogens, Borrelia burgdorferi, the causative agent of Lyme disease, has been shown to be present in various types of breast cancer and is associated with poor prognosis. We reported that B. burgdorferi can invade breast cancer cells and affect their tumorigenic phenotype. To better understand the genome-wide genetic changes caused by B. burgdorferi, we evaluated the microRNA (miRNA or miR) expression profiles of two triple-negative breast cancer cell lines and one non-tumorigenic mammary cell line before and after B. burgdorferi infection. Using a cancer-specific miRNA panel, four miRNAs (miR-206, 214-3p, 16-5p, and 20b-5p) were identified as potential markers for Borrelia-induced changes, and the results were confirmed by quantitative real-time reverse transcription (qRT-PCR). Among those miRNAs, miR-206 and 214 were the most significantly upregulated miRNAs. The cellular impact of miR-206 and 214 was evaluated using DIANA software to identify related molecular pathways and genes. Analyses showed that the cell cycle, checkpoints, DNA damage-repair, proto-oncogenes, and cancer-related signaling pathways are mostly affected by B. burgdorferi infection. Based on this information, we have identified potential miRNAs which could be further evaluated as biomarkers for tumorigenesis caused by pathogens in breast cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA