Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Autism ; 15(1): 35, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175054

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD), a neurodevelopmental disorder defined by social communication deficits plus repetitive behaviors and restricted interests, currently affects 1/36 children in the general population. Recent advances in functional brain imaging show promise to provide useful biomarkers of ASD diagnostic likelihood, behavioral trait severity, and even response to therapeutic intervention. However, current gold-standard neuroimaging methods (e.g., functional magnetic resonance imaging, fMRI) are limited in naturalistic studies of brain function underlying ASD-associated behaviors due to the constrained imaging environment. Compared to fMRI, high-density diffuse optical tomography (HD-DOT), a non-invasive and minimally constraining optical neuroimaging modality, can overcome these limitations. Herein, we aimed to establish HD-DOT to evaluate brain function in autistic and non-autistic school-age children as they performed a biological motion perception task previously shown to yield results related to both ASD diagnosis and behavioral traits. METHODS: We used HD-DOT to image brain function in 46 ASD school-age participants and 49 non-autistic individuals (NAI) as they viewed dynamic point-light displays of coherent biological and scrambled motion. We assessed group-level cortical brain function with statistical parametric mapping. Additionally, we tested for brain-behavior associations with dimensional metrics of autism traits, as measured with the Social Responsiveness Scale-2, with hierarchical regression models. RESULTS: We found that NAI participants presented stronger brain activity contrast (coherent > scrambled) than ASD children in cortical regions related to visual, motor, and social processing. Additionally, regression models revealed multiple cortical regions in autistic participants where brain function is significantly associated with dimensional measures of ASD traits. LIMITATIONS: Optical imaging methods are limited in depth sensitivity and so cannot measure brain activity within deep subcortical regions. However, the field of view of this HD-DOT system includes multiple brain regions previously implicated in both task-based and task-free studies on autism. CONCLUSIONS: This study demonstrates that HD-DOT is sensitive to brain function that both differentiates between NAI and ASD groups and correlates with dimensional measures of ASD traits. These findings establish HD-DOT as an effective tool for investigating brain function in autistic and non-autistic children. Moreover, this study established neural correlates related to biological motion perception and its association with dimensional measures of ASD traits.


Asunto(s)
Trastorno del Espectro Autista , Mapeo Encefálico , Percepción de Movimiento , Tomografía Óptica , Humanos , Tomografía Óptica/métodos , Masculino , Niño , Femenino , Percepción de Movimiento/fisiología , Mapeo Encefálico/métodos , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Trastorno Autístico/fisiopatología , Trastorno Autístico/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente
3.
Hum Brain Mapp ; 45(7): e26684, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703090

RESUMEN

Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations. As a result, typical and atypical developmental trajectories of processes such as language acquisition remain understudied during sensitive periods over the first years of life. We evaluate high-density diffuse optical tomography (HD-DOT) imaging combined with movie stimuli for high resolution optical neuroimaging in awake children ranging from 1 to 7 years of age. We built an HD-DOT system with design features geared towards enhancing both image quality and child comfort. Furthermore, we characterized a library of animated movie clips as a stimulus set for brain mapping and we optimized associated data analysis pipelines. Together, these tools could map cortical responses to movies and contained features such as speech in both adults and awake young children. This study lays the groundwork for future research to investigate response variability in larger pediatric samples and atypical trajectories of early brain development in clinical populations.


Asunto(s)
Mapeo Encefálico , Encéfalo , Tomografía Óptica , Humanos , Tomografía Óptica/métodos , Femenino , Niño , Masculino , Preescolar , Mapeo Encefálico/métodos , Lactante , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/crecimiento & desarrollo , Películas Cinematográficas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA