Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(29): 5769-5780, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984407

RESUMEN

We study the local dynamics of a thixotropic yield stress fluid that shows a pronounced non-monotonic flow curve. This mechanically unstable behavior is generally not observable from standard rheometry tests, resulting in a stress plateau that stems from the coexistence of a flowing band with an unyielded region below a critical shear rate c. Combining ultrasound velocimetry with standard rheometry, we discover an original shear-banding scenario in the decreasing branch of the flow curve of model paraffin gels, in which the velocity profile of the flowing band is set by the applied shear rate  instead of c. As a consequence, the material slips at the walls with a velocity that shows a non-trivial dependence on the applied shear rate. To capture our observations, we propose a differential version of the so-called lever rule, describing the extent of the flowing band and the evolution of wall slip with shear rate. This phenomenological model holds down to very low shear rates, at which the dimension of the flowing band becomes comparable to the size of the individual wax particles that constitute the gel microstructure, leading to cooperative effects. Our approach provides a framework where constraints imposed in the classical shear-banding scenario can be relaxed, with wall slip acting as an additional degree of freedom.

2.
Soft Matter ; 20(35): 6868-6888, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39028363

RESUMEN

Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.

3.
ACS Macro Lett ; : 234-239, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301141

RESUMEN

The present work offers a comprehensive description of the acid-induced gelation of carboxymethylcellulose (CMC), a water-soluble derivative of cellulose broadly used in numerous applications ranging from food packaging to biomedical engineering. Linear viscoelastic properties measured at various pH and CMC contents allow us to build a sol-gel phase diagram and show that CMC gels exhibit broad power-law viscoelastic spectra that can be rescaled onto a master curve following a time-composition superposition principle. These results demonstrate the microstructural self-similarity of CMC gels and inspire a mean-field model based on hydrophobic interchain association that accounts for the sol-gel boundary over the entire range of CMC content under study. Neutron scattering experiments further confirm this picture and suggest that CMC gels comprise a fibrous network cross-linked by aggregates. Finally, low-field NMR measurements offer an original signature of acid-induced gelation from a solvent perspective. Altogether, these results open avenues for the precise manipulation and control of CMC-based hydrogels.

4.
J Colloid Interface Sci ; 659: 914-925, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219310

RESUMEN

HYPOTHESIS: Rodlike cellulose nanocrystals (CNCs) exhibit significant potential as building blocks for creating uniform, sustainable materials. However, a critical hurdle lies in the need to enhance existing or devise novel processing that provides improved control over the alignment and arrangement of CNCs across a wide spatial range. Specifically, the challenge is to achieve orthotropic organization in a single-step processing, which entails creating non-uniform CNC orientations to generate spatial variations in anisotropy. EXPERIMENTS: A novel processing method combining frontal ultrafiltration (FU) and ultrasound (US) has been developed. A dedicated channel-cell was designed to simultaneously generate (1) a vertical acoustic force thanks to a vibrating blade at the top and (2) a transmembrane pressure force at the bottom. Time-resolved in situ small-angle X-ray scattering permitted to probe the dynamical structural organization/orientation of CNCs during the processing. FINDINGS: For the first time, a typical three-layer orthotropic structure that resembles the articular cartilage organization was achieved in one step during the FU/US process: a first layer composed of CNCs having their director aligned parallel to the horizontal membrane surface, a second intermediate isotropic layer, and a third layer of CNCs with their director vertically oriented along the direction of US wave propagation direction.

5.
ACS Macro Lett ; 12(12): 1733-1738, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064662

RESUMEN

We use time-resolved mechanical spectroscopy to offer a detailed picture of the gelation dynamics of cellulose nanocrystal (CNC) suspensions following shear cessation in the presence of salt. CNCs are charged, rodlike colloids that self-assemble into various phases, including physical gels serving as soft precursors for biosourced composites. Here, a series of linear viscoelastic spectra acquired across the sol-gel transition of CNC suspensions are rescaled onto two master curves that correspond to a viscoelastic liquid state prior to gelation and to a soft solid state after gelation. These two states are separated by a critical gel point, where all rescaling parameters diverge in an asymmetric fashion yet with exponents that obey hyperscaling relations consistent with previous works on isotropic colloids and polymer gels. Upon varying the salt content, we further show that these critical-like dynamics result in both time-connectivity and time-concentration superposition principles.

6.
Acta Biomater ; 169: 579-588, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516416

RESUMEN

Whilst strontium (Sr2+) is widely investigated for treating osteoporosis, it is also related to mineralization disorders such as rickets and osteomalacia. In order to clarify the physiological and pathological effects of Sr2+ on bone biomineralization , we performed a dose-dependent investigation in bone components using a 3D scaffold that displays the hallmark features of bone tissue in terms of composition (osteoblast, collagen, carbonated apatite) and architecture (mineralized collagen fibrils hierarchically assembled into a twisted plywood geometry). As the level of Sr2+ is increased from physiological-like to excess, both the mineral and the collagen fibrils assembly are destabilized, leading to a drop in the Young modulus, with strong implications on pre-osteoblastic cell proliferation. Furthermore, the microstructural and mechanical changes reported here correlate with that observed in bone-weakening disorders induced by Sr2+ accumulation, which may clarify the paradoxical effects of Sr2+ in bone mineralization. More generally, our results provide physicochemical insights into the possible effects of inorganic ions on the assembly of bone extracellular matrix and may contribute to the design of safer therapies for treating osteoporosis. STATEMENT OF SIGNIFICANCE: Physiological-like (10% Sr2+) and excess accumulation-like (50% Sr2+) doses of Sr2+ are investigated in 3D biomimetic assemblies possessing the high degree of organization found in the extracellular of bone. Above the physiological dose, the organic and inorganic components of the bone-like scaffold are destabilized, resulting in impaired cellular activity, which correlates with bone-weakening disorders induced by Sr2+.


Asunto(s)
Osteoporosis , Estroncio , Humanos , Estroncio/farmacología , Estroncio/química , Huesos/patología , Calcificación Fisiológica , Osteoporosis/patología , Colágeno/farmacología
7.
Soft Matter ; 18(40): 7897-7898, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36205114

RESUMEN

Correction for 'Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation' by Noémie Dagès et al., Soft Matter, 2022, 18, 6645-6659, https://doi.org/10.1039/D2SM00481J.

8.
Soft Matter ; 18(35): 6645-6659, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36004507

RESUMEN

Colloidal gels are out-of-equilibrium soft solids composed of attractive Brownian particles that form a space-spanning network at low volume fractions. The elastic properties of these systems result from the network microstructure, which is very sensitive to shear history. Here, we take advantage of such sensitivity to tune the viscoelastic properties of a colloidal gel made of carbon black nanoparticles. Starting from a fluidized state at an applied shear rate 0, we use an abrupt flow cessation to trigger a liquid-to-solid transition. We observe that the resulting gel is all the more elastic when the shear rate 0 is low and that the viscoelastic spectra can be mapped on a master curve. Moreover, coupling rheometry to small angle X-ray scattering allows us to show that the gel microstructure is different from gels solely formed by thermal agitation where only two length scales are observed: the dimension of the colloidal and the dimension of the fractal aggregates. Competition between shear and thermal energy leads to gels with three characteristic length scales. Such gels structure in a percolated network of fractal clusters that interpenetrate each other. Experiments on gels prepared with various shear histories reveal that cluster interpenetration increases with decreasing values of the shear rate 0 applied before flow cessation. These observations strongly suggest that cluster interpenetration drives the gel elasticity, which we confirm using a structural model. Our results, which are in stark contrast to previous literature, where gel elasticity was either linked to cluster connectivity or to bending modes, highlight a novel local parameter controlling the macroscopic viscoelastic properties of colloidal gels.

9.
J Chem Phys ; 156(21): 214901, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676150

RESUMEN

Cellulose nanocrystals (CNCs) are rodlike biosourced colloidal particles used as key building blocks in a growing number of materials with innovative mechanical or optical properties. While CNCs form stable suspensions at low volume fractions in pure water, they aggregate in the presence of salt and form colloidal gels with time-dependent properties. Here, we study the impact of salt concentration on the slow aging dynamics of CNC gels following the cessation of a high-shear flow that fully fluidizes the sample. We show that the higher the salt content, the faster the recovery of elasticity upon flow cessation. Most remarkably, the elastic modulus G' obeys a time-composition superposition principle: the temporal evolution of G' can be rescaled onto a universal sigmoidal master curve spanning 13 orders of magnitude in time for a wide range of salt concentrations. Such a rescaling is obtained through a time-shift factor that follows a steep power-law decay with increasing salt concentration until it saturates at large salt content. These findings are robust to changes in the type of salt and the CNC content. We further show that both linear and nonlinear rheological properties of CNC gels of various compositions, including, e.g., the frequency-dependence of viscoelastic spectra and the yield strain, can be rescaled based on the sample age along the general master curve. Our results provide strong evidence for universality in the aging dynamics of CNC gels and call for microstructural investigations during recovery as well as theoretical modeling of time-composition superposition in rodlike colloids.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Geles/química , Nanopartículas/química , Reología , Suspensiones
10.
Phys Rev E ; 104(3-1): 034612, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654204

RESUMEN

Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a critical stress σ_{y} such that YSFs are solid for stresses σ imposed below σ_{y}, whereas they flow like liquids for σ>σ_{y}. Under an applied shear rate γ[over ̇], the solid-to-liquid transition is associated with a complex spatiotemporal scenario that depends on the microscopic details of the system, on the boundary conditions, and on the system size. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called "stress overshoot," followed by stress relaxation towards a steady state. Such relaxation can be either (1) long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady state or (2) abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. In the present paper, we use a continuum model based on a spatially resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. A key feature of our model is to provide a scaling for the coordinates of the stress overshoot, i.e., stress σ_{M} and strain γ_{M} as a function of γ[over ̇], which shows good agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that the power-law scaling σ_{M}(γ[over ̇]) is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF, i.e., whether the steady-state flow profile is homogeneous or shear-banded. Finally, when including the presence of "long-range" correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling σ_{M}(γ[over ̇]). This generalized model nicely captures subtle avalanche-like features of the transient shear banding dynamics reported in experiments. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to nonlocal effects.

11.
Phys Rev Lett ; 127(14): 148003, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652189

RESUMEN

Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic stress response in the form of a stress maximum referred to as "stress overshoot." This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress σ_{M} and strain γ_{M} that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon startup of shear from the local flow behavior to the global rheological observables.

12.
Soft Matter ; 16(40): 9217-9229, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32926058

RESUMEN

We couple rheometry and ultrasonic velocimetry to study experimentally the flow behavior of gels of colloidal calcite particles dispersed in water, while tuning the strength of the interparticle attraction through physico-chemistry. We unveil, for the first time in a colloidal gel, a direct connection between attractive interactions and the occurrence of shear bands, as well as stress fluctuations.

13.
Proc Natl Acad Sci U S A ; 116(25): 12193-12198, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31164423

RESUMEN

Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.

14.
Soft Matter ; 15(12): 2688-2702, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30821300

RESUMEN

We study the motion of a sphere of diameter 330 µm embedded in a Carbopol microgel under the effect of the acoustic radiation pressure exerted by a focused ultrasonic field. The sphere motion within the microgel is tracked using videomicroscopy and compared to conventional creep and recovery measurements performed with a rheometer. We find that under moderate ultrasonic intensities, the sphere creeps as a power law of time with an exponent α ≃ 0.2 that is significantly smaller than the one inferred from global creep measurements below the yield stress of the microgel (α ≃ 0.4). Moreover, the sphere relaxation motion after creep and the global recovery are respectively consistent with these two different exponents. By allowing a rheological characterization at the scale of the sphere with forces of the order of micronewtons, the present experiments pave the way for acoustic "mesorheology" which probes volumes and forces an intermediate between standard macroscopic rheology and classical microrheology. They also open new questions about the effects of the geometry of the deformation field and of the sphere size and surface properties on the creep behaviour of soft materials.

15.
Phys Rev Lett ; 123(24): 248001, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31922825

RESUMEN

Dense emulsions, colloidal gels, microgels, and foams all display a solidlike behavior at rest characterized by a yield stress, above which the material flows like a liquid. Such a fluidization transition often consists of long-lasting transient flows that involve shear-banded velocity profiles. The characteristic time for full fluidization τ_{f} has been reported to decay as a power law of the shear rate γ[over ˙] and of the shear stress σ with respective exponents α and ß. Strikingly, the ratio of these exponents was empirically observed to coincide with the exponent of the Herschel-Bulkley law that describes the steady-state flow behavior of these complex fluids. Here we introduce a continuum model, based on the minimization of a "free energy," that captures quantitatively all the salient features associated with such transient shear banding. More generally, our results provide a unified theoretical framework for describing the yielding transition and the steady-state flow properties of yield stress fluids.

16.
J Colloid Interface Sci ; 539: 287-296, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30590236

RESUMEN

Natural rubber is obtained by processing natural rubber latex, a liquid colloidal suspension that rapidly gels after exudation from the tree. We prepared such gels by acidification, in a large range of particle volume fractions, and investigated their rheological properties. We show that natural rubber latex gels exhibit a unique behavior of irreversible strain hardening: when subjected to a large enough strain, the elastic modulus increases irreversibly. Hardening proceeds over a large range of deformations in such a way that the material maintains an elastic modulus close to, or slightly higher than the imposed shear stress. Local displacements inside the gel are investigated by ultrasound imaging coupled to oscillatory rheometry, together with a Fourier decomposition of the oscillatory response of the material during hardening. Our observations suggest that hardening is associated with irreversible local rearrangements of the fractal structure, which occur homogeneously throughout the sample.


Asunto(s)
Látex/química , Goma/química , Coloides/química , Geles/química , Reología
17.
Soft Matter ; 13(14): 2643-2653, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28327777

RESUMEN

Soft materials may break irreversibly upon applying sufficiently large shear oscillations, a process whose physical mechanism remains largely elusive. In this work, the rupture of protein gels made of sodium caseinate under an oscillatory stress is shown to occur in an abrupt, brittle-like manner. Upon increasing the stress amplitude, the build-up of harmonic modes in the strain response can be rescaled for all gel concentrations. This rescaling yields an empirical criterion to predict the rupture point way before the samples are significantly damaged. "Fatigue" experiments under stress oscillations of constant amplitude can be mapped onto the former results, which indicates that rupture is independent of the temporal pathway in which strain and damage accumulate. Finally, using ultrasonic imaging, we measure the local mechanical properties of the gels before, during and after breakdown, showing that the strain field remains perfectly homogeneous up to rupture but suddenly gives way to a solid-fluid phase separation upon breakdown.

18.
Soft Matter ; 13(9): 1834-1852, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177015

RESUMEN

Motivated by recent experimental studies of rheological hysteresis in soft glassy materials, we study numerically strain rate sweeps in simple yield stress fluids and viscosity bifurcating yield stress fluids. Our simulations of downward followed by upward strain rate sweeps, performed within fluidity models and the soft glassy rheology model, successfully capture the experimentally observed monotonic decrease of the area of the rheological hysteresis loop with sweep time in simple yield stress fluids, and the bell shaped dependence of hysteresis loop area on sweep time in viscosity bifurcating fluids. We provide arguments explaining these two different functional forms in terms of differing tendencies of simple and viscosity bifurcating fluids to form shear bands during the sweeps, and show that the banding behaviour captured by our simulations indeed agrees with that reported experimentally. We also discuss the difference in hysteresis behaviour between inelastic and viscoelastic fluids. Our simulations qualitatively agree with the experimental data discussed here for four different soft glassy materials.

19.
ACS Macro Lett ; 6(7): 663-667, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35650868

RESUMEN

Polymer gels behave as soft viscoelastic solids and exhibit a generic nonlinear mechanical response characterized by pronounced stiffening prior to irreversible failure, most often through macroscopic fractures. Here, we describe this scenario for a model protein gel using an integral constitutive equation built upon the linear and the nonlinear viscoelastic properties of the gel. We show that this formalism predicts quantitatively the gel mechanical response in shear start-up experiments, up to the onset of macroscopic failure. Moreover, we couple the computed stress response with Bailey's durability criterion for brittle solids in order to predict the critical values of the stress σc and strain γc at failure. The excellent agreement between theory and experiments suggests that failure in this soft viscoelastic gel is a Markovian process and that Bailey's failure criterion extends beyond hard materials such as metals, glasses, or minerals.

20.
Soft Matter ; 12(48): 9749-9758, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27886321

RESUMEN

We demonstrated recently that polyelectrolytes with cationic moieties along the chain and a single anionic head are able to form physical hydrogels due to the reversible nature of the head-to-body ionic bond. Here we generate a variety of such polyelectrolytes with various cationic moieties and counterion combinations starting from a common polymeric platform. We show that the rheological properties (shear modulus, critical strain) of the final hydrogels can be modulated over three orders of magnitude depending on the cation/anion pair. Our data fit remarkably well within a scaling model involving a supramolecular head-to-tail single file between cross-links, akin to the behaviour of pine-processionary caterpillar. This model allows the quantitative measure of the amount of counterion condensation from standard rheology procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA