Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(40): 8537-8550, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37791670

RESUMEN

The "bottom-up" approach to coarse-graining, for building accurate and efficient computational models to simulate large-scale and complex phenomena and processes, is an important approach in computational chemistry, biophysics, and materials science. As one example, the Multiscale Coarse-Graining (MS-CG) approach to developing CG models can be rigorously derived using statistical mechanics applied to fine-grained, i.e., all-atom simulation data for a given system. Under a number of circumstances, a systematic procedure, such as MS-CG modeling, is particularly valuable. Here, we present the development of the OpenMSCG software, a modularized open-source software that provides a collection of successful and widely applied bottom-up CG methods, including Boltzmann Inversion (BI), Force-Matching (FM), Ultra-Coarse-Graining (UCG), Relative Entropy Minimization (REM), Essential Dynamics Coarse-Graining (EDCG), and Heterogeneous Elastic Network Modeling (HeteroENM). OpenMSCG is a high-performance and comprehensive toolset that can be used to derive CG models from large-scale fine-grained simulation data in file formats from common molecular dynamics (MD) software packages, such as GROMACS, LAMMPS, and NAMD. OpenMSCG is modularized in the Python programming framework, which allows users to create and customize modeling "recipes" for reproducible results, thus greatly improving the reliability, reproducibility, and sharing of bottom-up CG models and their applications.

2.
J Chem Theory Comput ; 17(3): 1900-1913, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33596075

RESUMEN

Actin filament networks in eukaryotic cells are constantly remodeled through nucleotide state controlled interactions with actin binding proteins, leading to macroscopic structures such as bundled filaments, branched filaments, and so on. The nucleotide (ATP) hydrolysis, phosphate release, and polymerization/depolymerization reactions that lead to the formation of these structures are correlated with the conformational fluctuations of the actin subunits at the molecular scale. The resulting structures generate and experience varying levels of force and impart cells with several functionalities such as their ability to move, divide, transport cargo, etc. Models that explicitly connect the structure to reactions are essential to elucidate a fundamental level of understanding of these processes. In this regard, a bottom-up Ultra-Coarse-Grained (UCG) model of actin filaments that can simulate ATP hydrolysis, inorganic phosphate release (Pi), and depolymerization reactions is presented in this work. In this model, actin subunits are represented using coarse-grained particles that evolve in time and undergo reactions depending on the conformations sampled. The reactions are represented through state transitions, with each state represented by a unique effective coarse-grained potential. Effects of compressive and tensile strains on the rates of reactions are then analyzed. Compressive strains tend to unflatten the actin subunits, reduce the rate of ATP hydrolysis, and increase the Pi release rate. On the other hand, tensile strain flattens subunits, increases the rate of ATP hydrolysis, and decrease the Pi release rate. Incorporating these predictions into a Markov State Model highlighted that strains alter the steady-state distribution of subunits with ADPPi and ADP nucleotide, thus identifying possible additional factors underlying the cooperative binding of regulatory proteins to actin filaments.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adenosina Trifosfato/metabolismo , Fosfatos/metabolismo , Citoesqueleto de Actina/química , Adenosina Trifosfato/química , Humanos , Hidrólisis , Modelos Moleculares , Fosfatos/química
3.
J Phys Chem B ; 124(17): 3527-3539, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32264678

RESUMEN

Plant cell walls are complex systems that exhibit the characteristics of both rigid and soft material depending on their external perturbations. The three main polymeric components in a plant primary cell wall are cellulose fibrils, hemicellulose, and pectins. These components interact in a hierarchical fashion giving rise to mesoscale structural features such as cellulose bundles, lamella stacking, and so on. Although several studies have focused on understanding these unique structural features, a clear picture linking them to cell wall mechanics is still lacking. As a first step toward this goal, a phenomenological model of plant cell wall has been developed in this work by using available experimental data to investigate the underlying connections between mesoscale structural features and the motions of fibrils during deformation. In this model cellulose fibrils exhibit motions such as angular reorientations and kinking upon forced stretching. These motions are dependent on the orientation of fibrils with respect to the stretch direction, i.e., fibrils that are at an angle to the stretch direction exhibit predominant angular reorientations, while fibrils transverse to the stretch direction undergo kinking as a result of transverse compression. Varying the chain length of pectin had negligible effects on these motions. One of the main contributions from this work is the development of a simple model that can be easily fine-tuned to test other hypotheses and extended to include additional experimental knowledge about the structural aspects of cell walls in the future.


Asunto(s)
Pared Celular , Pectinas , Anisotropía , Membrana Celular , Celulosa
4.
J Phys Chem B ; 119(49): 15381-93, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26514915

RESUMEN

The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA