Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(5): 7680-7689, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726264

RESUMEN

Ge-on-Si plasmonics holds the promise for compact and low-cost solutions in the manipulation of THz radiation. We discuss here the plasmonic properties of doped Ge bow-tie antennas made with a low-point cost CMOS mainstream technology. These antennas display resonances between 500 and 700 GHz, probed by THz time domain spectroscopy. We show surface functionalization of the antennas with a thin layer of α-lipoic acid that red-shifts the antenna resonances by about 20 GHz. Moreover, we show that antennas protected with a silicon nitride cap layer exhibit a comparable red-shift when covered with the biolayer. This suggests that the electromagnetic fields at the hotspot extend well beyond the cap layer, enabling the possibility to use the antennas with an improved protection of the plasmonic material in conjunction with microfluidics.

2.
Opt Express ; 23(22): 28649-66, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561134

RESUMEN

We propose a theoretical model to describe the strain-induced linear electro-optic (Pockels) effect in centro-symmetric crystals. The general formulation is presented and the specific case of the strained silicon is investigated in detail because of its attractive properties for integrated optics. The outcome of this analysis is a linear relation between the second order susceptibility tensor and the strain gradient tensor, depending generically on fifteen coefficients. The proposed model greatly simplifies the description of the electro-optic effect in strained silicon waveguides, providing a powerful and effective tool for design and optimization of optical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA