Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37628148

RESUMEN

Mapping network nodes and edges to communities and network functions is crucial to gaining a higher level of understanding of the network structure and functions. Such mappings are particularly challenging to design for covert social networks, which intentionally hide their structure and functions to protect important members from attacks or arrests. Here, we focus on correctly inferring the structures and functions of such networks, but our methodology can be broadly applied. Without the ground truth, knowledge about the allocation of nodes to communities and network functions, no single network based on the noisy data can represent all plausible communities and functions of the true underlying network. To address this limitation, we apply a generative model that randomly distorts the original network based on the noisy data, generating a pool of statistically equivalent networks. Each unique generated network is recorded, while each duplicate of the already recorded network just increases the repetition count of that network. We treat each such network as a variant of the ground truth with the probability of arising in the real world approximated by the ratio of the count of this network's duplicates plus one to the total number of all generated networks. Communities of variants with frequently occurring duplicates contain persistent patterns shared by their structures. Using Shannon entropy, we can find a variant that minimizes the uncertainty for operations planned on the network. Repeatedly generating new pools of networks from the best network of the previous step for several steps lowers the entropy of the best new variant. If the entropy is too high, the network operators can identify nodes, the monitoring of which can achieve the most significant reduction in entropy. Finally, we also present a heuristic for constructing a new variant, which is not randomly generated but has the lowest expected cost of operating on the distorted mappings of network nodes to communities and functions caused by noisy data.

2.
Inf Sci (N Y) ; 584: 387-398, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37927357

RESUMEN

We focus on organizational structures in covert networks, such as criminal or terrorist networks. Their members engage in illegal activities and attempt to hide their association and interactions with these networks. Hence, data about such networks are incomplete. We introduce a novel method of rewiring covert networks parameterized by the edge connectivity standard deviation. The generated networks are statistically similar to themselves and to the original network. The higher-level organizational structures are modeled as a multi-layer network while the lowest level uses the Stochastic Block Model. Such synthetic networks provide alternative structures for data about the original network. Using them, analysts can find structures that are frequent, therefore stable under perturbations. Another application is to anonymize generated networks and use them for testing new software developed in open research facilities. The results indicate that modeling edge structure and the hierarchy together is essential for generating networks that are statistically similar but not identical to each other or the original network. In experiments, we generate many synthetic networks from two covert networks. Only a few structures of synthetics networks repeat, with the most stable ones shared by 18% of all synthetic networks making them strong candidates for the ground truth structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA