Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268682

RESUMEN

Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles. We extend this method to raspberry colloid templating, in which the binary suspension consists of titania nanoparticles together with gold-decorated polystyrene colloids. Following removal of the polymer particles, we demonstrate catalytic oxidative coupling of methanol to methyl formate using the resulting mesoporous supraparticles, showcasing their practical application.

2.
Chem Commun (Camb) ; 60(45): 5876, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38775084

RESUMEN

Correction for '3D printing of reactive macroporous polymers via thiol-ene chemistry and polymerization-induced phase separation' by Nikolaj K. Mandsberg et al., Chem. Commun., 2024, https://doi.org/10.1039/d4cc00466c.

3.
Chem Commun (Camb) ; 60(45): 5872-5875, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38517063

RESUMEN

Using thiol-ene chemistry, polymerization-induced phase separation, and DLP 3D printing, we present a method for manufacturing reactive macroporous 3D structures. This approach enables the fabrication of structures with tunable physicochemical properties and compressibility. Moreover, it facilitates post-functionalization through thiol-Michael addition reactions, thereby expanding performance and application potential.

4.
Sci Rep ; 11(1): 10675, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021211

RESUMEN

Phase-change condensation is commonplace in nature and industry. Since the 1930s, it is well understood that vapor condenses in filmwise mode on clean metallic surfaces whereas it condenses by forming discrete droplets on surfaces coated with a promoter material. In both filmwise and dropwise modes, the condensate is removed when gravity overcomes pinning forces. In this work, we show rapid condensate transport through cracks that formed due to material shrinkage when a copper tube is coated with silica inverse opal structures. Importantly, the high hydraulic conductivity of the cracks promote axial condensate transport that is beneficial for condensation heat transfer. In our experiments, the cracks improved the heat transfer coefficient from ≈ 12 kW/m2 K for laminar filmwise condensation on smooth clean copper tubes to ≈ 80 kW/m2 K for inverse opal coated copper tubes; nearly a sevenfold increase from filmwise condensation and identical enhancement with state-of-the-art dropwise condensation. Furthermore, our results show that impregnating the porous structure with oil further improves the heat transfer coefficient by an additional 30% to ≈ 103 kW/m2 K. Importantly, compared to the fast-degrading dropwise condensation, the inverse opal coated copper tubes maintained high heat transfer rates when the experiments were repeated > 20 times; each experiment lasting 3-4 h. In addition to the new coating approach, the insights gained from this work present a strategy to minimize oil depletion during condensation from lubricated surfaces.

5.
Proc Biol Sci ; 286(1902): 20190589, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31088270

RESUMEN

Male peacock spiders ( Maratus, Salticidae) compete to attract female mates using elaborate, sexually selected displays. They evolved both brilliant colour and velvety black. Here, we use scanning electron microscopy, hyperspectral imaging and finite-difference time-domain optical modelling to investigate the deep black surfaces of peacock spiders. We found that super black regions reflect less than 0.5% of light (for a 30° collection angle) in Maratus speciosus (0.44%) and Maratus karrie (0.35%) owing to microscale structures. Both species evolved unusually high, tightly packed cuticular bumps (microlens arrays), and M. karrie has an additional dense covering of black brush-like scales atop the cuticle. Our optical models show that the radius and height of spider microlenses achieve a balance between (i) decreased surface reflectance and (ii) enhanced melanin absorption (through multiple scattering, diffraction out of the acceptance cone of female eyes and increased path length of light through absorbing melanin pigments). The birds of paradise (Paradiseidae), ecological analogues of peacock spiders, also evolved super black near bright colour patches. Super black locally eliminates white specular highlights, reference points used to calibrate colour perception, making nearby colours appear brighter, even luminous, to vertebrates. We propose that this pre-existing, qualitative sensory experience-'sensory bias'-is also found in spiders, leading to the convergent evolution of super black for mating displays in jumping spiders.


Asunto(s)
Color , Pigmentación , Arañas/química , Arañas/fisiología , Animales , Femenino , Masculino , Microscopía Electrónica de Rastreo
6.
Proc Natl Acad Sci U S A ; 115(51): 12950-12955, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514819

RESUMEN

Dynamic functions of biological organisms often rely on arrays of actively deformable microstructures undergoing a nearly unlimited repertoire of predetermined and self-regulated reconfigurations and motions, most of which are difficult or not yet possible to achieve in synthetic systems. Here, we introduce stimuli-responsive microstructures based on liquid-crystalline elastomers (LCEs) that display a broad range of hierarchical, even mechanically unfavored deformation behaviors. By polymerizing molded prepolymer in patterned magnetic fields, we encode any desired uniform mesogen orientation into the resulting LCE microstructures, which is then read out upon heating above the nematic-isotropic transition temperature (TN-I) as a specific prescribed deformation, such as twisting, in- and out-of-plane tilting, stretching, or contraction. By further introducing light-responsive moieties, we demonstrate unique multifunctionality of the LCEs capable of three actuation modes: self-regulated bending toward the light source at T < TN-I, magnetic-field-encoded predetermined deformation at T > TN-I, and direction-dependent self-regulated motion toward the light at T > TN-I We develop approaches to create patterned arrays of microstructures with encoded multiple area-specific deformation modes and show their functions in responsive release of cargo, image concealment, and light-controlled reflectivity. We foresee that this platform can be widely applied in switchable adhesion, information encryption, autonomous antennae, energy harvesting, soft robotics, and smart buildings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA