Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 248: 104339, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34352427

RESUMEN

Trypanosoma cruzi is a flagellate protozoa being the etiological agent of Chagas disease, a neglected tropical disease, which still poses a public health problem worldwide. The intricate molecular changes during T. cruzi-host interaction have been explored using different largescale omics techniques. However, protein stability is largely unknown. Thermal proteome profiling (TPP) methodology has the potential to characterize proteome-wide stability highlighting key proteins during T. cruzi infection and life stage transition from the invertebrate to the mammalian host. In the present work, T. cruzi epimastigotes and trypomastigotes cell lysates were subjected to TPP workflow and analyzed by quantitative large-scale mass spectrometry-based proteomics to fit a melting profile for each protein. A total of 2884 proteins were identified and associated to 1741 melting curves being 1370 in trypomastigotes (TmAVG 53.53 °C) and 1279 in epimastigotes (TmAVG 50.89 °C). A total of 453 proteins were identified with statistically different melting profiles between the two life stages. Proteins associated to pathogenesis and intracellular transport had regulated melting temperatures. Membrane and glycosylated proteins had a higher average Tm in trypomastigotes compared to epimastigotes. This study represents the first large-scale comparison of parasite protein stability between life stages. SIGNIFICANCE: Trypanosoma cruzi, a unicellular flagellate parasite, is the etiological agent of Chagas disease, endemic in South America and affecting more that 7 million people worldwide. There is an intense research to identify novel chemotherapeutic and diagnostic targets of Chagas disease. Proteomic approaches have helped in elucidating the quantitative proteome and PTMs changes of T. cruzi during life cycle transition and upon different biotic and abiotic stimuli. However, a comprehensive knowledge of the protein-protein interaction and protein conformation is still missing. In order to fill this gap, this manuscript elucidates the T. cruzi Y strain proteome-wide thermal stability map in the epimastigote and trypomastigote life stages. Comparison between life stages showed a higher average melting temperature stability for trypomastigotes than epimastigotes indicating a host temperature adaptation. Both presented a selective thermal stability shift for cellular compartments, molecular functions and biological processes based on the T. cruzi life stage. Membrane and glycosylated proteins presented a higher thermal stability in trypomastigotes when compared to the epimastigotes.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Humanos , Estadios del Ciclo de Vida , Proteoma , Proteómica , Proteínas Protozoarias
2.
J Eukaryot Microbiol ; 65(1): 70-76, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28618210

RESUMEN

Trypanosoma cruzi, the etiological agent of Chagas disease, lacks genes that encode canonical branched-chain aminotransferases. However, early studies showed that when epimastigotes were grown in the presence of 14 C1 -DL-leucine, the label was incorporated into various intermediates. More recently, our studies provided evidence that T. cruzi epimastigotes display a single ATP-dependent and saturable transport system that enables epimastigotes to uptake branched-chain amino acids (BCAAs) from the culture media. To extend our knowledge of the first step of BCAA catabolism, the ability of this parasite's noncanonical broad specificity aminotransferases, such as tyrosine aminotransferase (TAT) and aspartate aminotransferase (ASAT), to transaminate these amino acids was investigated. Indeed, our results show that TAT and ASAT utilize BCAAs as substrates; however, both enzymes differ in their catalytic competence in utilizing these amino donors. For instance, ASAT transaminates isoleucine nearly 10-fold more efficiently than does TAT. This unique characteristic of TAT and ASAT allows to explain how BCAAs can be oxidized in the absence of a BCAA transaminase in T. cruzi.


Asunto(s)
Aspartato Aminotransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/enzimología , Tirosina Transaminasa/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA