Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994798

RESUMEN

BACKGROUND: Insecticide resistance among invasive tephritid fruit flies poses a great risk to national food security and has the potential to disrupt quarantine and eradication programs, which rely on the efficacy of Spinosad to prevent widespread establishment in North America. During 2022 to 2023 we surveyed the extent of Spinosad resistance of two key species, oriental fruit fly Bactrocera dorsalis, and melon fly Zeugodacus cucurbitae, from 20 sites across five Hawaiian Islands including Kaua'i, O'ahu, Maui, Molokai and the "Big Island" (Hawai'i). RESULTS: We used topical thoracic applications of eight concentrations of Spinosad ranging from 0.028 to 3.6 mg/mL to evaluate the lethal concentration (LC50 and LC99) required to kill wild-caught males. Resistance ratios (RR) were calculated by comparing the LC50 of wild flies to laboratory susceptible lines maintained in colony. Our results identified at least two new sites of concern for melon fly resistance on the Big Island, and at least four sites of concern for oriental fruit fly, all of which were located on the Big Island. At these locations RRs were >5. On O'ahu, melon fly RRs were >10. CONCLUSIONS: The persistence of Spinosad resistance is concerning, yet it is a reduction compared to the values reported previously and before changes to Spinosad use recommendations by local extension agents beginning in 2017. For oriental fruit fly, these RR values are the highest levels that have been detected in wild Hawai'i populations. These data suggest that expanded Spinosad reduction and replacement programs are warranted given the ongoing issues with Spinosad resistance in Hawai'i and expansion in the number of species affected. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
J Econ Entomol ; 109(1): 113-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26500338

RESUMEN

Natural enemy exploitation of food resources and alternative hosts in noncrop vegetation has been shown to be an effective means of enhancing natural enemy populations in diversified agro-ecosystem. Field trials were conducted in Hawaii to examine effects of interplanting flowering plants on 1) parasitism of corn earworm, Helicoverpa zea (Boddie) eggs by Trichogramma spp., and 2) abundance of Orius spp. in relation to prey (H. zea eggs and thrips [primarily, Frankliniella occidentalis (Pergande) and Frankliniella williamsi Hood]). Sweet corn (maize), Zea mays L., was interplanted with three flowering plants, buckwheat, Fagopyrum esculentum Moench, cowpea, Vigna unguiculata (L.), and sunn hemp, Crotolaria juncea L., at 2:1 and 4:1 (corn: flowering plant) ratios in 2009 and 2010, respectively. In 2009, the abundance of Orius spp. was significantly greater in the buckwheat-interplanted treatment compared to the monocrop control at similar levels of prey availability, indicating buckwheat flowers might have provided both prey and nectar resources. In 2010, cowpea and sunn hemp flowering plants provided a source of an alternate host insect's eggs for Trichogramma spp. oviposition, resulting in significantly higher parasitism of H. zea eggs in the cowpea- and sunn hemp-interplanted treatments compared to the monocrop control. Despite of differences in pest and natural enemy interactions in two field trials, our findings suggested that provisioning of an alternate host insect's eggs through flowering plants is an effective means for enhancing Trichogramma spp. and provisioning of both nectar and prey resources through flowering plants is important for enhancing predation by Orius spp.


Asunto(s)
Agricultura/métodos , Fabaceae/crecimiento & desarrollo , Heterópteros/fisiología , Mariposas Nocturnas/fisiología , Control Biológico de Vectores/métodos , Thysanoptera/fisiología , Zea mays/crecimiento & desarrollo , Animales , Crotalaria/crecimiento & desarrollo , Cadena Alimentaria , Hawaii , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Thysanoptera/crecimiento & desarrollo
3.
J Econ Entomol ; 104(3): 947-55, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21735915

RESUMEN

The banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), is the most economically important pest of banana (Musa spp.) fields in Hawaii. Recently, there has been a concerted effort in Hawaii to learn more about the biology and ecology of this pest. However, limited work has been directed at determining the distribution of P. nigronervosa in banana fields and developing an integrated pest management plan. Therefore, a survey was conducted in banana fields throughout the Hawaiian Islands to determine the distribution and density of P. nigronervosa within banana mats from plants of different stages. Another aim was to determine whether the presence of ants on banana plants could be used as a reliable indicator of aphid infestations. Results of the survey showed that plants < or = 1.5 m (small sucker) in height contain the highest aphid populations per meter in plant height and that mother plants (> or = 2.5 m) had the lowest aphid counts and rate of infestation compared with small and intermediate suckers (> 1.5 < 2.5 m). More specifically, aphid population was reduced by approximately 12 aphids for every meter increase in plant height and that aphids are rarely found > or = 2.5 m within the plant canopy. Although there was an increase likelihood of finding ants on banana plants with higher aphid densities, results suggest that ants would be present on plants in the absence of aphids. Implications of these and other findings with respect to sampling and managing P. nigronervosa and associated Banana bunchy top virus are discussed.


Asunto(s)
Áfidos/fisiología , Musa/fisiología , Animales , Hormigas/fisiología , Áfidos/crecimiento & desarrollo , Babuvirus/fisiología , Vectores de Enfermedades , Hawaii , Control de Insectos , Musa/crecimiento & desarrollo , Musa/virología , Virus de Plantas/fisiología , Densidad de Población
4.
J Econ Entomol ; 102(2): 493-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19449627

RESUMEN

Field and laboratory studies were conducted to determine the impact of using a herbicide as a bananacide on aphid transmission of Banana bunchy top virus (family Nanoviridae, genus Babuvirus, BBTV) to healthy banana (Musa spp.) plants. BBTV-infected banana plants in a commercial orchard were treated with Roundup Weathermax herbicide. Using polymerase chain reaction, the time after herbicide treatment that BBTV could no longer be detected in the infected plants was determined. The impact of the herbicide treatment on Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) virus acquisition and ability to inoculate healthy banana plants with BBTV also were determined. Generally, banana plants were dead beyond 42 d after herbicide injection (DAI), and BBTV was detected in a similar high percentage of treated plants from 0 up to 21 DAI. During two field trials, 0 and 32% of P. nigronervosa acquired the virus from treated plants at 42 DAI, respectively, but none successfully inoculated a healthy banana plant beyond 35 DAI. Finally, 22% of P. nigronervosa colonies collected directly from the pseudostem of injected plants at the final sample date (42 DAI) tested positive for BBTV and infected 9.5% of the healthy banana plants. The findings indicate that banana plants may remain a potential source of virus inoculum 6 wk after injection with a bananacide. The implications of these findings with respect to BBTV management are discussed.


Asunto(s)
Áfidos/virología , Babuvirus/fisiología , Herbicidas/farmacología , Musa/efectos de los fármacos , Enfermedades de las Plantas/virología , Animales , Interacciones Huésped-Patógeno , Musa/virología , Factores de Tiempo
5.
Environ Entomol ; 38(2): 442-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19389294

RESUMEN

Field experiments were conducted to evaluate the effects of cover cropping and intercropping on population densities of silverleaf whitefly, Bemisia argentifolli Bellow and Perring, and the incidence of squash silverleaf disorder (SSL) in zucchini, Cucurbita pepo L., in Oahu, HI. Two cover crops, buckwheat (BW), Fagopyrum esculentum Moench, and white clover (WC), Trifolium repens L., or sunn hemp (SH), Crotolaria juncea L., and an intercropped vegetable, okra, Abelmonchus esculentus L., were evaluated during the 2003, 2005, and 2006 growing seasons, respectively. Population densities of whiteflies and SSL severity varied during the three field experiments. In 2003, the severity of SSL and percentage of leaves displaying symptoms were significantly lower on zucchini plants in WC than BW plots throughout the crops' growth cycle. Additionally, the percentage of leaves per plant displaying SSL symptoms was significantly greater in bare-ground (BG) compared with the pooled BW and WC treatments on each inspection date. In 2005, zucchini intercropped with okra had lower numbers of adult whiteflies and resulted in significantly lower severity of SSL than pooled BW and WC treatments. During 2006, zucchini grown with SH had significantly lower numbers of all whitefly stages (i.e., egg, immature, and adult) and less SSL severity symptoms than BW. Despite these differences in whitefly numbers and SSL severity, marketable yields were not significantly lower in BW compared with WC or SH treatment plots during the study. The mechanisms underlying these results and the feasibility of using cover crops and intercrops to manage B. argentifolli and SSL are discussed.


Asunto(s)
Cucurbita/fisiología , Hemípteros/fisiología , Control de Insectos/métodos , Enfermedades de las Plantas , Animales , Cucurbita/crecimiento & desarrollo , Conducta Alimentaria , Frutas/crecimiento & desarrollo , Frutas/fisiología , Hemípteros/crecimiento & desarrollo , Larva/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA