Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 102(4-1): 043105, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212737

RESUMEN

We have used video imaging and interferometric techniques to investigate the dynamics of spreading of drops of ^{4}He on a solid surface for temperatures ranging from 5.2 K (near the critical point) to 2.2 K (near T_{λ}). After an initial transient, the drops become pancake-shaped with a radius that grows as R(t)≈t^{α}, with α=0.149±0.002. The drops eventually begin to shrink due to evaporation driven by gravitational and curvature effects, which limits their lifetime to about 1000 s. Although helium completely wets the substrate, and the spreading takes place over a pre-existing adsorbed film, a distinct contact line with a contact angle of order one degree is visible throughout this process.

2.
Sci Rep ; 7(1): 10173, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860641

RESUMEN

Resistive-pulse sensing is a label-free method for characterizing individual particles as they pass through ion-conducting channels or pores. During a resistive pulse experiment, the ionic current through a conducting channel is monitored as particles suspended in the solution translocate through the channel. The amplitude of the current decrease during a translocation, or 'pulse', depends not only on the ratio of the particle and channel sizes, but also on the particle position, which is difficult to resolve with the resistive pulse signal alone. We present experiments of simultaneous electrical and optical detection of particles passing through microfluidic channels to resolve the positional dependencies of the resistive pulses. Particles were tracked simultaneously in the two signals to create a mapping of the particle position to resistive pulse amplitude at the same instant in time. The hybrid approach will improve the accuracy of object characterization and will pave the way for observing dynamic changes of the objects such as deformation or change in orientation. This combined approach of optical detection and resistive pulse sensing will join with other attempts at hybridizing high-throughput detection techniques such as imaging flow cytometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA