Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Leukemia ; 31(11): 2479-2490, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28321121

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors, and comprises ~15% and 25% of pediatric and adult ALL cases, respectively. It is well-established that activating NOTCH1 mutations are the major genetic lesions driving T-ALL in most patients, but efforts to develop targeted therapies against this pathway have produced limited success in decreasing leukemic burden and come with significant clinical side effects. A finer detailed understanding of the genetic and molecular mechanisms underlying T-ALL is required identify patients at increased risk for treatment failure and the development of precision medicine strategies. Generation of genetic models that more accurately reflect the normal developmental history of T-ALL are necessary to identify new avenues for treatment. The DNA methyltransferase enzyme DNMT3A is also recurrently mutated in T-ALL patients, and we show here that inactivation of Dnmt3a combined with Notch1 gain-of-function leads to an aggressive T-ALL in mouse models. Moreover, conditional inactivation of Dnmt3a in mouse hematopoietic cells leads to an accumulation of immature progenitors in the thymus, which are less apoptotic. These data demonstrate that Dnmt3a is required for normal T-cell development, and acts as a T-ALL tumor suppressor.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Linfocitos T/citología , Animales , Apoptosis , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Leukemia ; 28(6): 1235-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24301523

RESUMEN

Infant leukemia (IL) is a rare sporadic cancer with a grim prognosis. Although most cases are accompanied by MLL rearrangements and harbor very few somatic mutations, less is known about the genetics of the cases without MLL translocations. We performed the largest exome-sequencing study to date on matched non-cancer DNA from pairs of mothers and IL patients to characterize congenital variation that may contribute to early leukemogenesis. Using the COSMIC database to define acute leukemia-associated candidate genes, we find a significant enrichment of rare, potentially functional congenital variation in IL patients compared with randomly selected genes within the same patients and unaffected pediatric controls. IL acute myeloid leukemia (AML) patients had more overall variation than IL acute lymphocytic leukemia (ALL) patients, but less of that variation was inherited from mothers. Of our candidate genes, we found that MLL3 was a compound heterozygote in every infant who developed AML and 50% of infants who developed ALL. These data suggest a model by which known genetic mechanisms for leukemogenesis could be disrupted without an abundance of somatic mutation or chromosomal rearrangements. This model would be consistent with existing models for the establishment of leukemia clones in utero and the high rate of IL concordance in monozygotic twins.


Asunto(s)
Biomarcadores de Tumor/genética , Reordenamiento Génico , Leucemia Mieloide Aguda/genética , Mutación/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Polimorfismo de Nucleótido Simple/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adulto , Estudios de Casos y Controles , Niño , Femenino , N-Metiltransferasa de Histona-Lisina , Humanos , Lactante , Leucemia Mieloide Aguda/congénito , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/congénito , Pronóstico , Tasa de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA