Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Phys ; 20(9): 1441-1447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282552

RESUMEN

Light and sound waves can move objects through the transfer of linear or angular momentum, which has led to the development of optical and acoustic tweezers, with applications ranging from biomedical engineering to quantum optics. Although impressive manipulation results have been achieved, the stringent requirement for a highly controlled, low-reverberant and static environment still hinders the applicability of these techniques in many scenarios. Here we overcome this challenge and demonstrate the manipulation of objects in disordered and dynamic media by optimally tailoring the momentum of sound waves iteratively in the far field. The method does not require information about the object's physical properties or the spatial structure of the surrounding medium but relies only on a real-time scattering matrix measurement and a positional guide-star. Our experiment demonstrates the possibility of optimally moving and rotating objects to extend the reach of wave-based object manipulation to complex and dynamic scattering media. We envision new opportunities for biomedical applications, sensing and manufacturing.

2.
Science ; 382(6676): 1297-1303, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995209

RESUMEN

Recent successes in deep learning for vision and natural language processing are attributed to larger models but come with energy consumption and scalability issues. Current training of digital deep-learning models primarily relies on backpropagation that is unsuitable for physical implementation. In this work, we propose a simple deep neural network architecture augmented by a physical local learning (PhyLL) algorithm, which enables supervised and unsupervised training of deep physical neural networks without detailed knowledge of the nonlinear physical layer's properties. We trained diverse wave-based physical neural networks in vowel and image classification experiments, showcasing the universality of our approach. Our method shows advantages over other hardware-aware training schemes by improving training speed, enhancing robustness, and reducing power consumption by eliminating the need for system modeling and thus decreasing digital computation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA