Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 406: 131089, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986884

RESUMEN

Limnospira maxima has been adapted to grow in high salinity and in an economically alternative medium using industrial-grade fertilizers under harsh environmental conditions in Saudi Arabia. A sequence of scaling-up processes, from the laboratory to large-scale open raceways, was conducted along with gradual adaptation to environmental stress (salinity, light, temperature, pH). High biomass concentration at harvest point and areal productivity were achieved during the harsh summer season (1.122 g L-1 and 60.35 g m-2 day-1, respectively). The average protein content was found to be above 40 % of dry weight. Changes in the color and morphological appearance of the L. maxima culture were observed after direct exposure to sunlight in the outdoor raceways. These results demonstrate a successful and robust adaptation method for algal cultivation at outdoor large-scale in harsh environment (desert conditions) and also prove the feasibility of using hypersaline seawater (42 g kg-1) as an algal growth medium.


Asunto(s)
Biomasa , Salinidad , Arabia Saudita , Adaptación Fisiológica , Ambientes Extremos , Temperatura , Concentración de Iones de Hidrógeno
2.
Front Microbiol ; 14: 1157151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152750

RESUMEN

The west coast of the Arabian Peninsula borders the Red Sea, a water body which maintains high average temperatures and increased salinity compared to other seas or oceans. This geography has many resources which could be used to support algal biotechnology efforts in bio-resource circularity. However, summer conditions in this region may exceed the temperature tolerance of most currently cultivated microalgae. The Cyanidiophyceae are a class of polyextremophilic red algae that natively inhabit acidic hot springs. C. merolae 10D has recently emerged as an interesting model organism capable of high-cell density cultivation on pure CO2 with optimal growth at elevated temperatures and acidic pH. C. merolae biomass has an interesting macromolecular composition, is protein rich, and contains valuable bio-products like heat-stable phycocyanin, carotenoids, ß-glucan, and starch. Here, photobioreactors were used to model C. merolae 10D growth performance in simulated environmental conditions of the mid-Red Sea coast across four seasons, it was then grown at various scales outdoors in Thuwal, Saudi Arabia during the Summer of 2022. We show that C. merolae 10D is amenable to cultivation with industrial-grade nutrient and CO2 inputs outdoors in this location and that its biomass is relatively constant in biochemical composition across culture conditions. We also show the adaptation of C. merolae 10D to high salinity levels of those found in Red Sea waters and conducted further modeled cultivations in nutrient enriched local sea water. It was determined that salt-water adapted C. merolae 10D could be cultivated with reduced nutrient inputs in local conditions. The results presented here indicate this may be a promising alternative species for algal bioprocesses in outdoor conditions in extreme coastal desert summer environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA