Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37837118

RESUMEN

The widespread nature of heat-resistant alloys is associated with the difficulties in their mechanical machining. It forces the use of the wire electrical discharge machining to be wider. The productivity, roughness, and dimensions of the modified layer of the machined surfaces are indicators of the machining quality. The search for new diagnostic parameters that can expand the information content of the operational monitoring/diagnostics of wire electrical discharge machining and accompany the currently used electrical parameters' data is an urgent research task. The article presents the studies of the relationship between the parameters of acoustic emission signals accompanying wire electrical discharge machining of heat-resistant alloys, process quality indicators, and characteristics of discharge pulses. The results are presented as mathematical expressions and graphs demonstrating the experimentally obtained dependencies. The research focuses on the formed white layer during wire electrical discharge machining. Pictures of thin cross-sections of the machined surfaces with traces of the modified layer are provided. The issues of crack formation in the modified layer and base materials are considered.

2.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679551

RESUMEN

Creating systems for monitoring technology processes based on concentrated energy flows is an urgent and challenging task for automated production. Similar processes accompany such processing technologies: intensive thermal energy transfer to the substance, heating, development of the melting and evaporation or sublimation, ionization, and expansion of the released substance. It is accompanied by structural and phase rearrangements, local changes in volumes, chemical reactions that cause perturbations of the elastic medium, and the propagation of longitudinal and transverse waves in a wide frequency range. Vibrational energy propagates through the machine's elastic system, making it possible to register vibrations on surfaces remotely. Vibration parameters can be used in monitoring systems to prevent negative phenomena during processing and to be a tool for understanding the processes' kinetics. In some cases, it is the only source of information about the progress in the processing zone.


Asunto(s)
Reproducción , Vibración , Cinética
3.
Materials (Basel) ; 15(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36234286

RESUMEN

Machining is an indispensable manufacturing process for a wide range of engineering materials, such as metals, ceramics, and composite materials, in which the tool wear is a serious problem, which affects not only the costs and productivity but also the quality of the machined components. Thus, the modification of the cutting tool surface by application of textures on their surfaces is proposed as a very promising method for improving tool life. Surface texturing is a relatively new surface engineering technology, where microscale or nanoscale surface textures are generated on the cutting tool through a variety of techniques in order to improve tribological properties of cutting tool surfaces by reducing the coefficient of friction and increasing wear resistance. In this paper, the studies carried out to date on the texturing of ceramic and superhard cutting tools have been reviewed. Furthermore, the most common methods for creating textures on the surfaces of different materials have been summarized. Moreover, the parameters that are generally used in surface texturing, which should be indicated in all future studies of textured cutting tools in order to have a better understanding of its effects in the cutting process, are described. In addition, this paper proposes a way in which to classify the texture surfaces used in the cutting tools according to their geometric parameters. This paper highlights the effect of ceramic and superhard textured cutting tools in improving the machining performance of difficult-to-cut materials, such as coefficient of friction, tool wear, cutting forces, cutting temperature, and machined workpiece roughness. Finally, a conclusion of the analyzed papers is given.

4.
Materials (Basel) ; 15(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35888466

RESUMEN

Spray drying is a widely used method of converting liquid material (aqueous or organic solutions, emulsions and suspensions) into a dry powder. Good flowability, narrow size distribution, and controllable morphology are inherent in powders produced by spray drying. This review considers the granulation factors that influence the final properties of the silicon nitride dried powders. The first group includes the types of atomizers, manifolds, and drying chamber configurations. The process parameters fall into the second group and include the following: inlet temperature, atomizing air flow, feed flow rate, drying gas flow rate, outlet temperature, and drying time. Finally, the last group, feedstock parameters, includes many factors such as feed surface tension, feed viscosity, solvent type, solid particle concentration, and additives. Given the large number of factors affecting morphology, particle size and moisture, optimizing the spray drying process is usually achieved by the "trial and error" approach. Nevertheless, some factors such as the effect of a solvent, dispersant, binder, and sintering additives considered in the literature that affect the Si3N4 granulation process were reviewed in the work. By summarizing the data available on silicon nitride powder production, the authors attempt to tackle the problem of its emerging demand in science and industry.

5.
Materials (Basel) ; 15(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35269178

RESUMEN

SiC-TiB2-TiC composites with matrices consisting of semiconductor material (SiC), conductive materials (TiB2-TiC), or their combination were fabricated by spark plasma sintering (SPS) at 2000 °C in a vacuum under a pressure of 80 MPa for 3 min. The composition and microstructure of the obtained composites were studied by X-ray diffraction and a scanning electron microscope equipped with an energy-dispersive detector. The flexural strength, Vickers hardness, and fracture toughness of SPSed samples were determined. Based on the observations in this work, three variations of the sintering process were proposed with different matrix compositions. The dense (99.7%) 60SiC-25TiB2-15TiC vol.% sintered ceramic composites exhibited the highest strength and hardness values of the studied composites, as well as a fracture toughness of 6.2 MPa·m1/2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA