Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Neurol Neurosurg Psychiatry ; 80(6): 659-66, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18403440

RESUMEN

OBJECTIVE: Despite the clinical success of deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD), little is known about the electrical spread of the stimulation. The primary goal of this study was to integrate neuroimaging, neurophysiology and neurostimulation data sets from 10 patients with PD, unilaterally implanted with subthalamic nucleus (STN) DBS electrodes, to identify the theoretical volume of tissue activated (VTA) by clinically defined therapeutic stimulation parameters. METHODS: Each patient specific model was created with a series of five steps: (1) definition of the neurosurgical stereotactic coordinate system within the context of preoperative imaging data; (2) entry of intraoperative microelectrode recording locations from neurophysiologically defined thalamic, subthalamic and substantia nigra neurons into the context of the imaging data; (3) fitting a three dimensional brain atlas to the neuroanatomy and neurophysiology of the patient; (4) positioning the DBS electrode in the documented stereotactic location, verified by postoperative imaging data; and (5) calculation of the VTA using a diffusion tensor based finite element neurostimulation model. RESULTS: The patient specific models show that therapeutic benefit was achieved with direct stimulation of a wide range of anatomical structures in the subthalamic region. Interestingly, of the five patients exhibiting a greater than 40% improvement in their Unified PD Rating Scale (UPDRS), all but one had the majority of their VTA outside the atlas defined borders of the STN. Furthermore, of the five patients with less than 40% UPDRS improvement, all but one had the majority of their VTA inside the STN. CONCLUSIONS: Our results are consistent with previous studies suggesting that therapeutic benefit is associated with electrode contacts near the dorsal border of the STN, and provide quantitative estimates of the electrical spread of the stimulation in a clinically relevant context.


Asunto(s)
Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Transmisión Sináptica/fisiología , Tomografía Computarizada por Rayos X/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Dominancia Cerebral/fisiología , Electrodos Implantados , Humanos , Red Nerviosa/fisiopatología , Examen Neurológico , Neuronas/fisiología , Sustancia Negra/fisiopatología , Tálamo/fisiopatología , Resultado del Tratamiento
2.
Acta Neurochir Suppl ; 97(Pt 2): 561-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17691348

RESUMEN

Stereotactic neurosurgery and neurophysiological microelectrode recordings in both humans and monkeys are typically done with conventional 2D atlases and paper records of the stereotactic coordinates. This approach is prone to error because the brain size, shape, and location of subcortical structures can vary between subjects. Furthermore, paper record keeping is inefficient and limits opportunities for data visualization. To address these limitations, we developed a software tool (Cicerone) that enables interactive 3D visualization of co-registered magnetic resonance images (MRI), computed tomography (CT) scans, 3D brain atlases, neurophysiological microelectrode recording (MER) data, and deep brain stimulation (DBS) electrode(s) with the volume of tissue activated (VTA) as a function of the stimulation parameters. The software can be used in pre-operative planning to help select the optimal position on the skull for burr hole (in humans) or chamber (in monkeys) placement to maximize the likelihood of complete microelectrode and DBS coverage of the intended anatomical target. Intra-operatively, Cicerone allows entry of the stereotactic microdrive coordinates and MER data, enabling real-time interactive visualization of the electrode location in 3D relative to the surrounding neuroanatomy and neurophysiology. In addition, the software enables prediction of the VTA generated by DBS for a range of electrode trajectories and tip locations. In turn, the neurosurgeon can use the combination of anatomical (MRI/CT/3D brain atlas), neurophysiological (MER), and electrical (DBS VTA) data to optimize the placement of the DBS electrode prior to permanent implantation.


Asunto(s)
Encéfalo/anatomía & histología , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Microelectrodos , Programas Informáticos , Animales , Mapeo Encefálico , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
3.
Acta Neurochir Suppl ; 97(Pt 2): 569-74, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17691349

RESUMEN

StimExplorer is a Windows-based software package intended to aid the clinical implementation of deep brain stimulation (DBS) technology. StimExplorer uses detailed computer models to provide a quantitative description of the 3D volume of tissue activated (VTA) by DBS as a function of the stimulation parameters and electrode location within the brain. The stimulation models are tailored to the individual patient by importing their magnetic resonance imaging (MRI) data and interactively scaling 3D anatomical nuclei to fit the patient anatomy. The user also inputs the DBS electrode orientation, location, and impedance data. The software then provides theoretically optimal stimulation parameter suggestions, intended to represent the start point for clinical programming of the DBS device. The software system is packaged into a clinician-friendly graphical user interface that allows for simultaneous interactive 3D visualization of the MRI, anatomical nuclei, DBS electrode, and VTAs for a wide range of stimulation parameter settings (contact, impedance, voltage, pulse width, and frequency). The goals of the StimExplorer system are to educate clinicians on the impact of stimulation parameter manipulation, and improve therapeutic outcomes by providing quantitative anatomical and electrical information useful for customizing DBS to individual patients.


Asunto(s)
Encéfalo/anatomía & histología , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Programas Informáticos , Animales , Encéfalo/fisiología , Mapeo Encefálico , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA