Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Methods Protoc ; 9(1): bpae020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680163

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is unceasingly spreading across the globe, and recently a highly transmissible Omicron SARS-CoV-2 variant (B.1.1.529) has been discovered in South Africa and Botswana. Rapid identification of this variant is essential for pandemic assessment and containment. However, variant identification is mainly being performed using expensive and time-consuming genomic sequencing. In this study, we propose an alternative RT-qPCR approach for the detection of the Omicron BA.1 variant using a low-cost and rapid SYBR Green method. We have designed specific primers to confirm the deletion mutations in the spike (S Δ143-145) and the nucleocapsid (N Δ31-33) which are characteristics of this variant. For the evaluation, we used 120 clinical samples from patients with PCR-confirmed SARS-CoV-2 infections, and displaying an S-gene target failure (SGTF) when using TaqPath COVID-19 kit (Thermo Fisher Scientific, Waltham, USA) that included the ORF1ab, S, and N gene targets. Our results showed that all the 120 samples harbored S Δ143-145 and N Δ31-33, which was further confirmed by whole-genome sequencing of 10 samples, thereby validating our SYBR Green-based protocol. This protocol can be easily implemented to rapidly confirm the diagnosis of the Omicron BA.1 variant in COVID-19 patients and prevent its spread among populations, especially in countries with high prevalence of SGTF profile.

2.
Arch Virol ; 168(7): 194, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380930

RESUMEN

Coronavirus disease 2019 (COVID-19), a serious infectious disease caused by the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a major global health crisis. Although no specific antiviral drugs have been proven to be fully effective against COVID-19, remdesivir (GS-5734), a nucleoside analogue prodrug, has shown beneficial effects when used to treat severe hospitalized COVID-19 cases. The molecular mechanism underlying this beneficial therapeutic effect is still vaguely understood. In this study, we assessed the effect of remdesivir treatment on the pattern of circulating miRNAs in the plasma of COVID-19 patients, which was analyzed using MiRCURY LNA miRNA miRNome qPCR Panels and confirmed by quantitative real-time RT-PCR (qRT-PCR). The results revealed that remdesivir treatment can restore the levels of miRNAs that are upregulated in COVID-19 patients to the range observed in healthy subjects. Bioinformatics analysis revealed that these miRNAs are involved in diverse biological processes, including the transforming growth factor beta (TGF-ß), hippo, P53, mucin-type O-glycan biosynthesis, and glycosaminoglycan biosynthesis signaling pathways. On the other hand, three miRNAs (hsa-miR-7-5p, hsa-miR-10b-5p, and hsa-miR-130b-3p) were found to be upregulated in patients receiving remdesivir treatment and in patients who experienced natural remission. These upregulated miRNAs could serve as biomarkers of COVID-19 remission. This study highlights that the therapeutic potential of remdesivir involves alteration of certain miRNA-regulated biological processes. Targeting of these miRNAs should therefore be considered for future COVID-19 treatment strategies.


Asunto(s)
COVID-19 , MicroARN Circulante , MicroARNs , Humanos , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , MicroARNs/genética
3.
Infect Genet Evol ; 94: 105020, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34343725

RESUMEN

Nowadays, the coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a major global health problem. Intensive efforts are being employed to better understand this pathology and develop strategies enabling its early diagnosis and efficient treatment. In this study, we compared the signature of circulating miRNAs in plasma of COVID-19 patients versus healthy donors. MiRCURY LNA miRNA miRNome qPCR Panels were performed for miRNA signature characterization. Individual quantitative real-time PCR (qRT-PCR) was carried out to validate miRNome qPCR results. Receiver-operator characteristic (ROC) curve analysis was applied to assess the diagnostic accuracy of the most significantly deregulated miRNA(s) as potential diagnostic biomarker(s). Eight miRNAs were identified to be differentially expressed with miR-17-5p and miR-142-5p being down-regulated whilst miR-15a-5p, miR-19a-3p, miR-19b-3p, miR-23a-3p, miR-92a-3p and miR-320a being up-regulated in SARS-CoV-2-infected patients. ROC curve analyses revealed an AUC (Areas Under the ROC Curve) of 0.815 (P = 0.031), 0.875 (P = 0.012), and 0.850 (P = 0.025) for miR-19a-3p, miR-19b-3p, and miR-92a-3p, respectively. Combined ROC analyses using these 3 miRNAs showed a greater AUC of 0.917 (P = 0.0001) indicating a robust diagnostic value of these 3 miRNAs. These results suggest that plasma miR-19a-3p, miR-19b-3p, and miR-92a-3p expression levels could serve as potential diagnostic biomarker and/or a putative therapeutic target during SARS-CoV-2-infection.


Asunto(s)
COVID-19/sangre , MicroARN Circulante/sangre , Adulto , Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/fisiopatología , MicroARN Circulante/genética , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
4.
Genes Genomics ; 41(12): 1431-1443, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31541355

RESUMEN

BACKGROUND: Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Triple negative breast cancer (TNBC), lacking the expression of estrogen, progesterone and HER2 receptors, has an aggressive clinical phenotype and is susceptible to chemotherapy but not to hormonal or targeted immunotherapy. In an attempt to identify potent and selective anti-TNBC agents, a set of thiosemicarbazone derivatives were screened for their cytotoxic activity against MDA-MB 231 breast cancer cell line. METHODS: MTT assay was used to examine cell viability. P53 phosphorylation status, poly (ADP-ribose) polymerase (PARP) cleavage as well as Bcl2 and Bax protein levels were assessed by Western blot. Quantitative Real Time-PCR was carried out to characterize miRNAs expression levels. RESULTS: Combining Cisplatin + thiosemicarbazone compound 4 showed potent anti-TNBC potential. Cisplatin + compound 4 significantly enhanced p53 phosphorylation, induced Bax amount, reduced Bcl2 protein levels, enhanced PARP cleavage and modulated miRNAs expression profile in TNBCs, with a particular overexpression of miR-125a-5p and miR-181a-5p. Intriguingly, miR-125a-5p and miR-181a-5p could significantly downregulate BCL2 expression by binding to their target sites in the 3'UTR. CONCLUSIONS: Collectively, our results demonstrate an anti-TNBC activity of Cisplatin + thiosemicarbazone compound 4 combination mediated via induction of apoptosis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , MicroARNs/metabolismo , Tiosemicarbazonas/farmacología , Neoplasias de la Mama Triple Negativas/genética , Regiones no Traducidas 3' , Línea Celular Tumoral , Cisplatino/farmacología , Humanos , MicroARNs/genética , MicroARNs/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tiosemicarbazonas/química , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Med Sci Monit Basic Res ; 25: 88-99, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30867404

RESUMEN

BACKGROUND Due to their chemical constituents and biological properties, plants have long been used to control life-threatening diseases. The flora of Lebanon includes many plants that have already been demonstrated to have medicinal value, and other species, such as Pentapera sicula libanotica, that are yet to be characterized. The present study characterized the chemical composition, anti-oxidant, anti-inflammatory, and anti-proliferative potential of aqueous, ethanol, and methanol extracts derived from the leaves of the Lebanese Pentapera plant. MATERIAL AND METHODS High-performance liquid chromatography (HPLC) was used to determine the chemical composition. Gas chromatography (GC) coupled with mass spectrometry (MS) was applied to determine the content of essential oil. DPPH radical scavenging assay was performed to evaluate the anti-oxidant potential. The anti-inflammatory potential was assessed using quantitative real-time PCR (qRT-PCR) by measuring TNF-alpha, IL-6, and CCL4 mRNA levels, and we assessed Cox-2 and iNOS proteins levels using Western blot (WB) analysis. MTT assay was carried out to determine the anti-proliferative potential. RESULTS We identified, mainly in the alcoholic (methanol and ethanol) extracts, distinct bioactive compounds with pharmacological relevance. In parallel, with their phytochemical content, these 2 extracts showed significant anti-oxidant, anti-inflammatory and anti-proliferative capacities. CONCLUSIONS Pentapera sicula libanotica appears to be a promising pharmacological tool.


Asunto(s)
Ericaceae/metabolismo , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/análisis , Fitoterapia , Hojas de la Planta/química
6.
Biomed Res Int ; 2019: 2868673, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30766881

RESUMEN

BACKGROUND: Novel treatments for bone defects, particularly in patients with poor regenerative capacity, are based on bone tissue engineering strategies which include mesenchymal stem cells (MSCs), bioactive factors, and convenient scaffold supports. OBJECTIVE: In this study, we aimed at comparing the potential for different scaffolds to induce osteogenic differentiation of human maxillary Schneiderian sinus membrane- (hMSSM-) derived cells. Methods. hMSSM-derived cells were seeded on gelatin, collagen, or Hydroxyapatite ß-Tricalcium phosphate-Fibrin (Haß-TCP-Fibrin) scaffolds. Cell viability was determined using an MTT assay. Alizarin red staining method, Alkaline phosphatase (ALP) activity assay, and quantitative real-time PCR analysis were performed to assess hMSSM-derived cells osteogenic differentiation. RESULTS: Cell viability, calcium deposition, ALP activity, and osteoblastic markers transcription levels were most striking in gelatin scaffold-embedded hMSSM-derived cells. CONCLUSION: Our findings suggest a promising potential for gelatin-hMSSM-derived cell construct for treating bone defects.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Mucosa Nasal/fisiología , Osteogénesis/fisiología , Fosfatasa Alcalina/fisiología , Huesos/metabolismo , Huesos/fisiología , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Colágeno/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Mucosa Nasal/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido
8.
Med Sci Monit Basic Res ; 23: 270-284, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28769026

RESUMEN

BACKGROUND In the present study, phytochemical screening, antioxidant, anti-inflammatory, and antiproliferative capacities of 3 extracts from leaves of Lebanese Crataegus azarolus L. were evaluated. MATERIAL AND METHODS Fresh leaves were dissolved in 3 different solvents: distilled water, ethanol, and methanol. The chemical composition was determined using high-performance liquid chromatography (HPLC) and the content of essential oil of this plant was examined by gas chromatography (GC) coupled with mass spectrometry (MS). The antioxidant potential was evaluated using DPPH radical scavenging and Fe2+ chelating activity assays. Anti-inflammatory effect was investigated by measuring the secreted amounts of the proinflammatory mediator PGE2 using ELISA technique, as well as by assaying the mRNA levels of the proinflammatory cytokines (IL-α, IL-ß, and Il-6), chemokines (CCL3 and CCL4) and inflammation-sensitive COX2 and iNOS enzymes using quantitative real-time PCR (qRT-PCR). The antiproliferative effect was evaluated using the XTT viability assay. RESULTS The obtained results show that alcohol (methanol and ethanol) extracts were rich in bioactive molecules with medical relevance and exerted substantial antioxidant, anti-inflammatory, and antiproliferative capacities. On the other hand, aqueous extract contained fewer chemical components and exhibited less therapeutic efficiency. CONCLUSIONS Our observations indicate that Crataegus azarolus L. could be used for treating diseases related to oxidative stress, inflammatory reactions, and uncontrolled cell growth.


Asunto(s)
Crataegus/química , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas/métodos , Fitoquímicos/análisis , Fitoterapia , Extractos Vegetales/farmacología , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA